
Manual

roloFlash 2

Document version 1.7.1 as of 2025-04-27
(Software version: 07.AA and later)

Copyright © 2009-2025 halec. All brand names, trademarks, logos and pictures are the property of their respec-
tive owners. This document is subject to errors and changes without notice.

i

halec
Herrnröther Str. 54

63303 Dreieich
Germany

www.halec.de

http://www.halec.de/

Table Of Contents

I Preface.. .1
II Scope of Delivery.. .3
III Description... .4

1 Universal Connector (Programming Connector)... .4
1.1 Pin Assignments (Overview)... .4
1.2 Pinout JTAG Interface... .6
1.3 Pinout SWD Interface.. .8
1.4 Pinout Atmel ISP Interface.. .9
1.5 Pinout Atmel TPI Interface.. .10
1.6 Pinout Atmel PDI Interface.. .11
1.7 Pinout Atmel UPDI / aWire Interface... .12
1.8 Pinout UART 0 Interface... .13
1.9 Pinout UART 1 Interface... .14
1.10 Pinout GPIO Interface... .14

2 Pull-Up- / Pull-Down Resistors... .15
3 Voltage Range.. .16
4 Electrical Protection Measures... .16
5 LEDs... .17
6 microSD Card Slot.. .17
7 Typical Usage... .17

7.1 Preparation of the microSD card on a PC... .17
7.2 Flashing of the Target Boards... .19

IV Updating roloFlash.. .20

1 Updating the Bootloader... .20
2 Updating roloFlash Firmware.. .22

V List of Supplied roloBasic Scripts... .25

1 Hello world.. .25
2 Versions.. .26
3 Erase-and-Flash... .26
4 Read... .28

VI roloFlash API (List of Procedures and Functions)... .30

1 Internal Database... .31
1.1 db_getHandle.. .31
1.2 db_get... .32

2 Busses.. .33
2.1 bus_open... .34
2.2 bus_close.. .35
2.3 bus_setSpeed... .36
2.4 bus_getSpeed... .37
2.5 JTAG and SWD Bus.. .38

ii

2.5.1 JTAG Chain.. .38
2.5.2 bus_open(JTAG/SWD, …) and available speeds....................... .38
2.5.3 bus_enforceJTAG... .42
2.5.4 bus_enforceSWD.. .43
2.5.5 bus_scan.. .44
2.5.6 bus_configure... .45
2.5.7 bus_transceive.. .46
2.5.8 bus_write.. .47
2.5.9 bus_read... .49

2.6 Atmel ISP Bus... .50
2.6.1 bus_open(ISP, …) and Available Speeds....................................50
2.6.2 Configure Reset Mode.. .53

2.7 Atmel TPI Bus... .55
2.7.1 bus_open(TPI, …) and Available Speeds................................... .55
2.7.2 Configure Reset Mode.. .58

2.8 Atmel PDI-Bus... .59
2.8.1 bus_open(PDI, …) and Available Speeds...................................59

2.9 Atmel UPDI / aWire Bus.. .62
2.9.1 bus_open(UPDI / AWIRE, …) and Available Speeds..................62

2.10 UART... .64
2.10.1 bus_open(UART, …) and Available Speeds..............................64
2.10.2 bus_write.. .70
2.10.3 bus_read... .71

3 Target in General.. .72
3.1 target_open... .72
3.2 target_close... .74
3.3 target_getPresent.. .75
3.4 target_setMode... .77
3.5 target_restart... .79
3.6 Read/Write Target Memory Map... .82

3.6.1 target_setMemoryMap.. .82
3.6.2 target_getMemoryMap.. .84
3.6.3 target_clearMemoryLayout... .85

3.7 Loader... .86
3.8 Erase, Write, Read and Verify Target...87

3.8.1 target_eraseFlash... .87
3.8.2 target_writeFromFile... .88
3.8.3 target_readToFile... .91
3.8.4 target_write... .94
3.8.5 target_read... .95

3.9 Target STM32... .97
3.9.1 target_setVoltageForParallelism... .98
3.9.2 target_setParallelism.. .100
3.9.3 target_getParallelism.. .101
3.9.4 target_setLoaderPreference... .102
3.9.5 target_getLoaderUsage.. .103

iii

3.10 Target Atmel AVR (ISP Interface)... .104
3.10.1 target_getDeviceId.. .104
3.10.2 target_readBits... .105
3.10.3 target_writeBits... .106
3.10.4 target_setExtendedAddressMode..108

3.11 Atmel TPI (TPI Interface)... .109
3.11.1 target_getDeviceId.. .109
3.11.2 target_readBits... .110
3.11.3 target_writeBits... .111

3.12 Target Atmel PDI (PDI Interface)..112
3.12.1 target_getDeviceId.. .113
3.12.2 target_readBits... .114
3.12.3 target_writeBits... .115

3.13 Target Atmel UPDI (UPDI-Interface)... .116
3.13.1 target_getDeviceId.. .117
3.13.2 target_readBits... .118
3.13.3 target_writeBits... .119

3.14 Target Atmel AVR32 (aWire-Interface)...121
3.14.1 target_getDeviceId.. .121

4 Flash-Data.. .122
4.1 fd_write.. .126
4.2 fd_createArray... .128
4.3 fd_writeArrayElem... .129
4.4 fd_writeSubArray... .131
4.5 fd_read.. .132
4.6 fd_readArrayElem... .134
4.7 fd_readSubArray... .135
4.8 fd_remove... .137
4.9 fd_getItemCount.. .138
4.10 fd_getId... .139
4.11 fd_idExists... .140
4.12 fd_isArray.. .141
4.13 fd_getArraySize... .142
4.14 fd_getType.. .143
4.15 fd_getCountingBytes... .144
4.16 fd_setCrc... .145
4.17 fd_getCrc... .146
4.18 fd_calcCrc... .147
4.19 fd_hasCrc.. .149
4.20 fd_getFreeMem... .150
4.21 fd_getBytesWritten.. .151
4.22 fd_setSingleBufferMode.. .152
4.23 fd_getSingleBufferMode.. .153
4.24 fd_cleanup... .154
4.25 fd_format... .155

5 Files.. .156

iv

5.1 fs_mediaExists.. .157
5.2 fs_create.. .158
5.3 fs_rename... .159
5.4 fs_remove.. .160
5.5 fs_mkDir.. .161
5.6 fs_fileExists... .162
5.7 fs_filesize... .163
5.8 fs_open.. .164
5.9 fs_read.. .165
5.10 fs_write.. .166
5.11 fs_truncate... .167
5.12 fs_close... .168
5.13 fs_sync.. .169

6 LEDs... .170
6.1 led_on.. .170
6.2 led_off.. .171
6.3 led_blink.. .172
6.4 led_runningLight.. .172
6.5 led_runningLightOutstanding.. .173

7 SecureApi... .174
7.1 sec_crc.. .177
7.2 sec_hash... .178
7.3 sec_encrypt... .179
7.4 sec_decrypt... .181

9 GPIO Interface.. .182
9.1 GPIO_open... .182
9.2 GPIO_setMode.. .184
9.3 GPIO_set... .185
9.4 GPIO_get.. .186

10 Querying roloFlash Properties.. .187
10.1 Version Numbers etc.187
10.2 sys_serialNumber.. .187
10.3 sys_uniqueId... .188

11 Miscellaneous... .189
11.1 sys_setLogMode... .189
11.2 print... .190
11.3 sprint.. .191
11.4 delay.. .192
11.5 sys_getSystemTime.. .193
11.6 getTargetBoardVoltage... .193
11.7 sys_setCpuClock... .194
11.8 sys_getCpuClock.. .195
11.9 sys_getEraseCounters.. .196
11.10 setBitBlock... .197
11.11 getBitBlock.. .198
11.12 chain.. .200

v

VII Exceptions.. .202

1 roloBasic Exceptions.. .202
2 File System Exceptions.. .203
3 roloFlash Exceptions.. .204
4 User Exceptions... .207

VIII Description of LED Codes... .209

1 Normal Operation... .209
1.1 No microSD card found... .209
1.2 Exception has Occurred.. .209

2 roloFlash Update.. .210
2.1 Waiting for microSD Card for Udpate.. .210
2.2 Update is Running... .211
2.3 Update Finished Successfully... .211
2.4 Update Failed: File Error... .211
2.5 Update Failed: File Not Found.. .212
2.6 Update Failed: Multiple Files Found.. .212
2.7 Update Failed: Other Reasons.. .213

IX Specifications.. .214

1 Supported Controllers from ST Microelectronics.. .214
1.1 STM32F0... .214
1.2 STM32F1... .215
1.3 STM32F2... .216
1.4 STM32F3... .216
1.5 STM32F4... .217
1.6 STM32F7... .218
1.7 STM32H7.. .219
1.8 STM32L0... .219
1.9 STM32L1... .220
1.10 STM32L4... .221
1.11 STM32L4+... .222
1.12 STM32G0.. .223
1.13 STM32WB... .223

2 Supported Controllers from Atmel.. .223
2.1 AVR (ISP Interface)... .224
2.2 AVR (TPI Interface)... .226
2.3 AVR (PDI Interface)... .226
2.4 AVR (UPDI Interface).. .227
2.5 AVR32 (aWire Interface)... .227

3 Technical Data.. .228

vi

Manual

roloFlash 2 I Preface

I Preface
• roloFlash allows for mobile and PC-independent flashing of your

products which can be based on various microcontrollers. Under certain
conditions, multiple microcontrollers can be flashed in your product. A
list of currently supported microcontrollers is available in chapter
"Specifications " .

• Since roloFlash is free of operator controls, and thusly avoids operating
errors, your products can be flashed by untrained personnel or custo-
mers.

• Neither PC nor microcontroller-specific tool-chains are necessary.

• Use roloFlash in field, at your customers' sites and in large- and small-
batch production.

• Gain more freedom by employing a uniform process for all supported mi-
crocontroller families*.

Term "Atmel"

Although microcontroller manufacturer Atmel has been acquired by Micro-
chip, the name "Atmel" continues to be used in our documentation and
software, to avoid confusion with other controllers by Microchip (e.g. the
PIC-family).

Term "Target board"

The term "target board" is used to mean your products to be flashed. The
products contain the microcontroller(s) to be flashed. From now on, this
term is used regularly throughout this document.

Term "Target"

The term "target" is used to mean the microcontrollers to be flashed (multi-
ple microcontrollers can be flashed in a JTAG chain). From now on, this
term is used regularly throughout this document.

Term "Microcontroller to be flashed"

© halec 2025 1

Manual

roloFlash 2 I Preface

In addition to "flashing" you can read out your microcontrollers‘ flash me-
mory (and e. g. save it as HEX file), verify it (e. g. against a HEX file), era-
se or modify it. For the sake of intelligibility, only the process of "flashing"
gets mentioned from now on, without elaborating on the other possibilities
every time.

Characters "<" and ">"

In descriptions of the functions and procedures, parameters are often en-
closed by "<" and ">". This is to indicate to replace the parameter with a
meaningful value (without the angle brackets):

Example:

delay <duration>

You could write, e. g.

delay 1000

to have a delay of 1 second.

© halec 2025 2

Manual

roloFlash 2 II Scope of Delivery

II Scope of Delivery
Carefully check the package contents:

• roloFlash 2

• microSD card
- prepared for use in your roloFlash, containing documentation, examp-
les, firmware and roloBasic compiler
- for insertion into roloFlash‘s card slot

Note: The microSD card is either inserted into roloFlash or into the adapter
or is enclosed separately.

© halec 2025 3

Manual

roloFlash 2 III Description

III Description

1 Universal Connector (Programming Connector)

The female 10-pin universal connector gets plugged either onto:

• a matching male connector on the target board to be programmed,
or

• a matching target board adapter (sold separately), which in turn
gets plugged onto the target board to be programmed.

On the front of roloFlash, you will find a pin-1-marking directly above the
programming connector.

The connector‘s contact spacing is 2.54 mm (0.1 inches).

1.1 Pin Assignments (Overview)

Depending on the configured bus, roloFlash‘s signal semantics can differ.

The default pinout is for the JTAG configuration. If individual pins are to be
used as GPIOs, then the JTAG pin naming scheme is the base for naming
the GPIOs.

When using JTAG or SWD, the pinout is identical to that of a female ARM
CoreSight 10 connector, just with a 2.54 mm (0.1 inches) pitch instead of
the original 1.27 mm (0.05 inch) pitch.

© halec 2025 4

Manual

roloFlash 2 III Description

GPIO UART
1

UART
0

TPI ISP PDI UPDI
aWire

JTAG SWD SWD JTAG UPDI
aWire

PDI ISP TPI UART
0

UART
1

GPIO

Signal Pins Signal

Vtgt 1 ● ● 2 SWDIO TMS DATA DATA MISO DATA TX TMS

GND 3 ● ● 4 SWDCLK TCK CLK SCK CLK TCK

GND 5 ● ● 6 TDO RX TDO

RTCK RX 7 ● ● 8 TDI MOSI TDI

GND
De-
tect

TX 9 ● ●10 RST RST RST

Table 1: Overview of target board pinouts in top view

© halec 2025 5

Manual

roloFlash 2 III Description

Note:

There are numerous adapters available to adapt roloFlash‘s pinout to va-
rious common programming connector pinouts; these adapters are listed
in the subchapters of the appropriate busses.

In addtion, a universal adapter is available:

Description Pins Rows Spacing [mm]

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) and
2.54 (thru-hole)

1.2 Pinout JTAG Interface

When using the JTAG interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

7 8 TDI

9 10

Table 2: Top view of male JTAG connector of a target board

Note:

The pinout is identical (1:1) to the female 10-pin JTAG high-density-
connector (ARM Cortex debug connector), except it has a contact spacing
of 2.54 mm instead of the HD-connector‘s 1.27 mm.

Note:

The remaining signals are not vital for JTAG and thusly available for use
by other busses. For example, you can operate the reset pin (pin 10) as
GPIO and use it to reset the target.

© halec 2025 6

Manual

roloFlash 2 III Description

Another possibility for resetting the target is provided by the AIRCR regis-
ter in ARM-based microcontrollers (e.g. STM32 MCUs):

© halec 2025 7

Manual

roloFlash 2 III Description

aircr_array = dim(long, 1)
aircr_array[0] = $05fa0004
print "Resetting target ...\r\n"
target_write tHandle, aircr_array, RAM, WRITEONLY, $e000ed0c

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing
[mm]

roloFlash-2-Target-Adapter ARM JTAG 20p 20 2 2.54

roloFlash-2-Target-Adapter ARM Cortex Debug 10p HD 10 2 1.27

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) +
2.54 (THT)

1.3 Pinout SWD Interface

When using the SWD interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 SWDIO

GND 3 4 SWDCLK

GND 5 6

7 8

9 10

Table 3: Top view of male SWD connector of a target board

Note:

The pinout is identical (1:1) to the female 10-pin JTAG high-density-
connector (ARM Cortex debug connector), except it has a contact spacing
of 2.54 mm instead of the HD-connector‘s 1.27 mm.

Note:

© halec 2025 8

Manual

roloFlash 2 III Description

The remaining signals are not vital for SWD and thusly available for use by
other busses. For example, you can operate the reset pin (pin 10) as
GPIO and use it to reset the target.

Another possibility for resetting the target is provided by the AIRCR regis-
ter in ARM-based microcontrollers (e.g. STM32 MCUs):

aircr_array = dim(long, 1)
aircr_array[0] = $05fa0004
print "Resetting target ...\r\n"
target_write tHandle, aircr_array, RAM, WRITEONLY, $e000ed0c

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing
[mm]

roloFlash-2-Target-Adapter ARM JTAG 20p 20 2 2.54

roloFlash-2-Target-Adapter ARM Cortex Debug 10p HD 10 2 1.27

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) +
2.54 (THT)

1.4 Pinout Atmel ISP Interface

When using the ISP interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 MISO

GND 3 4 SCK

GND 5 6

7 8 MOSI

9 10 RST

Table 4: Top view of male ISP connector of a target board

© halec 2025 9

Manual

roloFlash 2 III Description

Warning!

This pinout is not compatible to the 10-pin Atmel ISP pinout, even if it fits
mechanically!

Note:

The remaining signals are unused by ISP and thusly available for use by
other busses. For example, you can operate them as GPIO.

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-Target-Adapter Atmel ISP/TPI 6p 6 2 2.54

roloFlash-2-Target-Adapter Atmel ISP/TPI 10p 10 2 2.54

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) and
2.54 (thru-hole)

1.5 Pinout Atmel TPI Interface

When using the TPI interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 DATA

GND 3 4 CLK

GND 5 6

7 8

9 10 RST

Table 5: Top view of male TPI connector of a target board

© halec 2025 10

Manual

roloFlash 2 III Description

Warning!

This pinout is not compatible to the 10-pin Atmel ISP pinout, even if it fits
mechanically!

Note:

The remaining signals are unused by TPI and thusly available for use by
other busses. For example, you can operate them as GPIO.

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-Target-Adapter Atmel ISP/TPI 6p 6 2 2.54

roloFlash-2-Target-Adapter Atmel ISP/TPI 10p 10 2 2.54

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) and
2.54 (thru-hole)

1.6 Pinout Atmel PDI Interface

When using the PDI interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 DATA

GND 3 4 CLK

GND 5 6

7 8

9 10

Table 6: Top view of male PDI connector of a target board

© halec 2025 11

Manual

roloFlash 2 III Description

Warning!

This pinout is not compatible to the 10-pin Atmel ISP pinout, even if it fits
mechanically!

Note:

The remaining signals are unused by PDI and thusly available for use by
other busses. For example, you can operate them as GPIO.

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-Target-Adapter Atmel PDI 6p
(Note: This adapter is suitable for ATmel UPDI, too)

6 2 2.54

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) +
2.54 (THT)

1.7 Pinout Atmel UPDI / aWire Interface

When using the UPDI interface or aWire interface, the following pinout is
used:

Signal Pin Pin Signal

Vtgt 1 2 DATA

GND 3 4

GND 5 6

7 8

9 10

Table 7: Top view of male UPDI / aWire connector of a target board

© halec 2025 12

Manual

roloFlash 2 III Description

Warning!

This pinout is not compatible to the 10-pin Atmel ISP pinout, even if it fits
mechanically!

Note:

The remaining signals are unused by UPDI and aWire and thusly available
for use by other busses. For example, you can operate them as GPIO.

Note:

The following adapters are available to adapt the pinout to common pro-
gramming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-Target-Adapter Atmel PDI 6p
(Note: This adapter is suitable for Atmel UPDI and
Atmel aWire, too)

6 2 2.54

roloFlash-2-Universal-Adapter 1-20 1-2 1.27 (SMD) and
2.54 (thru-hole)

1.8 Pinout UART 0 Interface

When using the UART 0 interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2 TX

GND 3 4

GND 5 6 RX

7 8

9 10

Table 8: Top view of matching male connector of a target board

Note:

© halec 2025 13

Manual

roloFlash 2 III Description

If there are no conflicts with other pins, other busses can be opened at the
same time. With this UART, this is not the case for JTAG, SWD, Atmel
ISP, Atmel PDI, Atmel TPI, and Atmel UPDI. Instead, you can use UART 1
interface for this purpose.

Note:

The remaining signals are unused by UART 0 and thusly available for use
by other busses. For example, you can operate them as GPIO.

1.9 Pinout UART 1 Interface

When using the UART 1 interface, the following pinout is used:

Signal Pin Pin Signal

Vtgt 1 2

GND 3 4

GND 5 6

RX 7 8

TX 9 10

Table 9: Top view of matching male connector of a target board

Note:

If there are no conflicts with other pins, other busses can be opened at the
same time. With this UART, this is the case for JTAG, SWD, Atmel ISP,
Atmel PDI, Atmel TPI, and Atmel UPDI.

Note:

The remaining signals are unused by UART 1 and thusly available for use
by other busses. For example, you can operate them as GPIO.

1.10 Pinout GPIO Interface

For every pin that can be used as GPIO, there is a separate interface. The
following pins are available:

© halec 2025 14

Manual

roloFlash 2 III Description

Signal Pin Pin Signal

1 2 TMS

3 4 TCK

5 6 TDO

RTCK 7 8 TDI

GND Detect 9 10 Reset

Table 10: Top view of matching male connector of a target board

Note:

Pins TDO and RTCK cannot be used as output.

Note:

If there are no conflicts with other pins, other busses can be opened at the
same time.

Example:

roloFlash‘s reset line is not part of the JTAG and SWD bus, since it is not
required for the actual JTAG or SWD protocol. You can open the reset pin
as a GPIO pin in parallel to the opened JTAG or SWD bus, and control the
reset of the target with it.

2 Pull-Up- / Pull-Down Resistors

For a well-defined voltage level on all pins, roloFlash employs internal pull-
up and pull-down resistors:

© halec 2025 15

Manual

roloFlash 2 III Description

Resistor Signal Pin Pin Signal Resistor

- Vtgt 1 2 TMS Pull-up 1 MΩ

- GND 3 4 TCK Pull-down 1 MΩ

- GND 5 6 TDO Pull-up 1 MΩ

Pull-up 1 MΩ RTCK 7 8 TDI Pull-up 1 MΩ

Pull-up 1 MΩ GND
Detect

9 10 Reset Pull-up 1 MΩ

Table 11: Top view of matching male connector of a target board

3 Voltage Range

roloFlash gets powered by the target board via pin 1 (Vtgt), thereby all data
lines are adapted by roloFlash to this very voltage.

Voltage range: 2.0 - 5.5 volts

4 Electrical Protection Measures

roloFlash offers the following protection measures:

• Voltage reversal of the supply voltage: The supply voltage line gets
reversibly disconnected by a transistor.

• Overvoltage of the supply voltage: With voltages over 5.7 V, a pro-
tection circuit reversibly disconnects the supply voltage line.

• All data lines are reversibly protected by polyswitches against over-
current.

• In order to protect the target board, the second GND contact on
pin 5 is connected to GND on Pin 3 via a polyswitch which reversib-
ly protects against a shortcircuit between pin 3 and pin 5.

• All lines are equipped with ESD protection components, which fulfill
IEC 61000-4-2 level 4 (15 kV (air discharge) , 8 kV (contact dischar-
ge)).

© halec 2025 16

Manual

roloFlash 2 III Description

These measures offer an extensive protection against operating errors like
voltage reversal etc. Nonetheless it cannot be excluded that operating er-
rors lead to damages to target board and/or roloFlash.

5 LEDs

roloFlash contains five programmable bi-color (red and green) LEDs on
the front. Using the LEDs, you can e. g.

• show a running light visualizing the flash process

• output errors in red

6 microSD Card Slot

The card slot is designed for a microSD or microSDHC card comprising
the compiled script to be run (RUN_V06.BIN) as well as the images to be
flashed.

7 Typical Usage

The typical course of action consists of two parts:

• Preparation of the microSD card on a PC (e. g. in development depart-
ment)

• Flashing of the target boards (e. g. by untrained personnel in production
department, customers or technicians in the field)

7.1 Preparation of the microSD card on a PC

E. g. in the development department

The authoritative source for program flow is the file "RUN_V07.BIN", which
gets processed by roloFlash to execute the program sequence encoded in
it. The supplement "V07" correlates to the major-part of roloFlash‘s soft-
ware version.

© halec 2025 17

Manual

roloFlash 2 III Description

• If you want to format a microSD card, do so using Windows 7 or higher
(Windows XP is not suitable).

• Model the desired process in roloBasic. For this, you can use or adapt
one of the many supplied sample scripts. In chapter "Specifications" you
will find a list of exact names of microcontrollers known to roloFlash and
you can use in your roloBasic script. The file you create should have the
file extension ".BAS".

• Your roloBasic file can start with a magic cookie line, it is recommen-
ded to use:

#roloFlash 2, v07+

If a magic cookie line exists, it has to start with "#roloFlash 2". An optio-
nal version number can be specified as shown above, the suffix "+" will
make roloFlashs with an even higher version number accept the file. Op-
tional you can restrict the usage of the script to versions beginning with
v07 with “#roloFlash 2,v07.*“. An erroneous magic cookie line will lead
to the compiler refusing compilation. The version number corresponds to
the major number of the roloFlash‘s firmware version.

• Models roloFlash 2 and roloFlash 2 AVR: The Basic files are executable
on all models; there is no model-specific compiler. The magic cookie
lines are identical for all models.

• Your script can point to:

• standard ".HEX" files (Intel HEX format: "I8HEX", "I16HEX", and
"I32HEX")

• Motorola S-Record / SREC / S19 / S28 / S37 files

• ".ELF" files

• ".RAW" files

which are to be flashed to the target.

• On the PC, run the compiler "rbc_v07.exe". This creates a compiled file
(an "image") of the same name with the file extension ".BIN".

• Rename the file to "RUN_V07.BIN" or instead of running "rbc_v07.exe"
run the batch file "compile_v07.bat", which creates "RUN_V07.BIN"
from "RUN_V07.BAS". After that, copy the file "RUN_V07.BIN" and the
files needed by the script (e. g. a ".HEX" file and possibly a required loa-
der file) to the microSD card, whereby RUN_V07.BIN must reside in the
root directory.

© halec 2025 18

Manual

roloFlash 2 III Description

You can store the script files (".BAS"), the compiled files (".BIN") and the
compiler at your own discretion on the PC and/or on the microSD card. ro-
loFlash only evaluates the file "RUN_V07.BIN" (as well as the files being
referenced by the code).

Note: With firmware versions older than V05.AA, the roloFlash 2 family al-
ways processes the file "RUN.BIN". As of version V05.AA, the major versi-
on gets included in the file name, which therefore reads "RUN_V05.BAS"
or "RUN_V06.BAS", respectively.

This makes it possible to place multiple "RUN_Vxx.BIN" on the microSD
card, and then use it with different roloFlashs which have different firm-
ware versions (at least V05.AA). Each roloFlash picks the "RUN_Vxx.BIN"
file matching his firmware.

7.2 Flashing of the Target Boards

E. g. untrained personnel in the production department

Here, the course of action is very simple:

• Supply the target board with energy.

• Plug roloFlash onto the matching connector of the target board (or
connect it via an adapter).

• roloFlash gets powered by the target board and automatically starts pro-
cessing of the file "RUN_V07.BIN", by which usually the actual flashing
is carried out. Meanwhile, e. g., a green running light visualizes the fla-
shing process.

• After successfully processing "RUN_V07.BIN", which is usually indicated
by a green lit LED 5, remove roloFlash – done.

© halec 2025 19

Manual

roloFlash 2 IV Updating roloFlash

IV Updating roloFlash

1 Updating the Bootloader

Starting with firmware versions v07.xx, roloFlash needs a new bootloader
version to run these app firmware versions.

If roloFlash is to be updated from a version before v07.AA to version
v07.AA or later, you must update the bootloader beforehand. In all
other cases, this chapter is irrelevant.

After updating to the new bootloader, you can still upgrade and downgrade
your firmware versions as you please.

For updating the bootloader, a special bootloader update firmware is provi-
ded:

• RF2_06ZZ.HMP for roloFlash 2

• RF2A06ZZ.HMP for roloFlash 2 AVR

From the perspective of the old bootloader, this is just an ordinary firm-
ware which can be installed as usual.

The update consists of two steps that both have to be executed, in
the following order:

1. Installation of the bootloader update firmware

2. Update of the bootloader

1. Installation of the bootloader update firmware

• The root folder of the microSD card has to contain exactly one firmware
file (RF2_V06ZZ.HMP or RF2AV06ZZ.HMP). If multiple firmware files
are present, the update process will not be started.

• The udpate process starts when roloFlash without microSD card get
plugged onto any target board and the microSD card gets inserted after-
wards.

• The target board serves as power supply only.

© halec 2025 20

Manual

roloFlash 2 IV Updating roloFlash

• The progress of the update process is indicated using the LEDs, see
chapter „roloFlash Update“.

• As long as no microSD card is inserted, LED 1 is red.

• During the update, LED 2 and LED 3 will flash green alternatively. rolo-
Flash should not be unplugged during the update.
If, however, roloFlash did get unplugged during the update, the firmware
might be defective. In this state, roloFlash should automatically insist on
another update.
I.e. after a power cycle, roloFlash will wait for the microSD card to be in-
serted, and the firmware on it will be flashed anew.
In case an update got interrupted, please start the update again,
even if you think that the interrupted update might have been suc-
cessfull nevertheless.

• When successful, LED 1 and LED 2 will light up green.

• roloFlash stays in this state until unplugged. Unplug roloFlash now.

• Afterwards, remove the file for the bootloader update firmware from the
microSD card.

2. Update of the bootloader

• Insert a microSD card (which can be empty) into roloFlash and plug it
onto a target.

• Now the actual Update of the bootloader starts. LED 2 lights up red.

• During the update, LED 3 and LED 4 will flash green alternatively.

roloFlash must not get unplugged now.
If, however, roloFlash did get unplugged during this process, the
bootloader might be defective. This can only be fixed by sending
roloFlash in to the manufacturer.

• When successful, LED 2 will light up red and LED 5 will light up green.

• roloFlash stays in this state until unplugged. Unplug roloFlash now.

• After the next time roloFlash gets plugged onto a target, it will run with
the updated bootloader. You should now directly continue with updating
the firmware (see next chapter).

© halec 2025 21

Manual

roloFlash 2 IV Updating roloFlash

2 Updating roloFlash Firmware

roloFlash has its own firmware which can get updated.

Version numbers

The version number is composed of major and minor:

• major:
Major gets updated when:
- the roloBasic interface (API) changes.

• minor:
Minor gets updated for changes that don‘t affect the roloBasic inter-
face, e. g.:
- Bug fixes
- Target database entries have been added
- Speed optimizations

Consequently, as long as major has not been updated, no update of the
roloBasic compiler is needed, and RUN_V07.BIN files already compiled
are still valid.

Filenames for the firmware update

The filename for the firmware update adheres to the usual 8.3 naming
convention of the FAT filesystem and is structured as follows:

RF2_aabb.HMP where:

• aa = major (as number, e. g. "01")

• bb = minor (as letter, e. g. "AA")

Starting the update

• If roloFlash is currently powered, unplug it from the power source.

• Copy the desired firmware file to the microSD card and insert it into rolo-
Flash.

• For updating, exactly one firmware file must be present in the root direc-
tory of the microSD card. If multiple firmware files are present, the up-
date process will not start.

© halec 2025 22

Manual

roloFlash 2 IV Updating roloFlash

• Connect roloFlash to a target board for power supply. The update pro-
cess will start and will show an appropriate LED flashing pattern (see
next chapter, "The update process").

• There is no check if the firmware on the microSD card is newer or older
than roloFlash‘s currently used firmware. Thus, you can return to an ol-
der version, if you ever need to.

• After successful update, remove the firmware file from the microSD card
to prevent another update.

Note: The prepared microSD card that comes with roloFlash contains the
current firmware version in a subdirectory (usually named "firmware"). This
file will only be considered for an update, if it gets copied (or moved) to the
root directory of the microSD card.

The update process

• During the process, the target board merely serves as a power supply
for roloFlash.

• The process gets visualized using roloFlash‘s LEDs, see chapter "rolo-
Flash Update " . In particular, LED 1 is lit red during and after the update.

• During the update, LED 1 is lit red, and LED 2 and LED 3 blink alterna-
tively for multiple seconds. roloFlash should not be removed during
the update process.
FIf, however, roloFlash has been removed during the process, the firm-
ware stored inside roloFlash might be defective. In this state, roloFlash
should automatically insist on a new update, i.e. upon the next connecti-
on to a power source (usually a target board), roloFlash keeps waiting,
until a microSD card with a valid firmware file is inserted. This file is then
used for the update, which starts immediately after detection of the firm-
ware file.
If an update process got interrupted, do repeat the update process,
even if you‘re under the impression that the interrupted process
was successful in the end.

• Upon success, LED 1 stays lit red, and LED 2 is lit green.

• roloFlash remains in this state until removed from the target board. Plea-
se remove roloFlash now.

• Remove the firmware file from the microSD card.

© halec 2025 23

Manual

roloFlash 2 IV Updating roloFlash

• As of the next time you plug on roloFlash on a target board, it runs with
the updated firmware.

If the update process has not been successful, please use a microSD card
which:

• has been freshly formatted with FAT32 under Windows 7 or higher,
and

• solely contains the file for the firmware update.

Note:

It is recommended that no firmware files are left on the microSD card, if it
is to be used in the production department or handed over to a customer.

© halec 2025 24

Manual

roloFlash 2 V List of Supplied roloBasic Scripts

V List of Supplied roloBasic
Scripts

1 Hello world

Location:

• scripts\hello-world\RUN_V07.BAS

• Additionally, this script as well as the compiled RUN_V07.BIN are in
the microSD card‘s root directory on delivery.

Preparation:

• To use it, copy the script as RUN_V07.BAS to the microSD card‘s root
directory.

• Start the compiler using „compile_v07.bat“ in order to create the requi-
red RUN_V07.BIN from RUN_V07.BAS.

Function:

• Removes a possibly existent previous LOG.TXT file.

• Writes some text to the LOG.TXT file, including „Hello world“.

• Shows a green running light from LED 1 to LED 4 for 3 seconds.

• Shows a red running light from LED 1 to LED 4 for 3 seconds.

• Shows a green running light from LED 4 to LED 1 for 3 seconds.

• Shows a red running light from LED 4 to LED 1 for 3 seconds.

• Finally, LED 5 lights up green.

© halec 2025 25

Manual

roloFlash 2 V List of Supplied roloBasic Scripts

2 Versions

Location:

• scripts\versions\RUN_V07.BAS

Preparation:

• To use it, copy the script as RUN_V07.BAS to the microSD card‘s root
directory.

• Start the compiler using „compile_v07.bat“ in order to create the requi-
red RUN_V07.BIN from RUN_V07.BAS.

Function:

• Removes a possibly existent previous LOG.TXT file.

• Writes roloFlash‘s version numbers etc. to the LOG.TXT file:

• Company Name

• Device name

• Software Version

• Hardware Version

• Bootloader Version

• Image Version

• Finally, LED 5 lights up green.

3 Erase-and-Flash

Location:

• In directory scripts\STM32:

• STM32_F1_F3\JTAG\erase-and-flash\RUN_V07.BAS

• STM32_F1_F3\SWD\erase-and-flash\RUN_V07.BAS

• STM32_F2_F4_F7\JTAG\erase-and-flash\RUN_V07.BAS

© halec 2025 26

Manual

roloFlash 2 V List of Supplied roloBasic Scripts

• STM32_F2_F4_F7\SWD\erase-and-flash\RUN_V07.BAS

• STM32_H7\JTAG\erase-and-flash\RUN_V07.BAS

• STM32_H7\SWD\erase-and-flash\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\ISP\erase-and-flash\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\TPI\erase-and-flash\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\PDI\erase-and-flash\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\UPDI\erase-and-flash\RUN_V07.BAS

Preparation:

• This script is available in a version for STM32, Atmel ISP, Atmel TPI,
Atmel PDI and Atmel UPDI microcontrollers, respectively.

• To use it, copy the version of the script matching your microcontroller
as RUN_V07.BAS to the microSD card‘s root directory.

• Subsequently adapt the name of your target and the filename of the
HEX file for the flash memory in the script (for Atmel: Optionally, you
can specify another HEX file for the EEPPROM).

• Optionally, you can adapt the bus speed as well as roloFlash‘s CPU
frequency.

• Start the compiler using „compile_v07.bat“ in order to create the requi-
red RUN_V07.BIN from RUN_V07.BAS.

Function:

• Starts a running light from LED 1 to LED 4 to visualize the flash pro-
cess.

• Removes a possibly existent previous LOG.TXT file.

• Opens the appropriate bus for the target.

• From the internal target database, roloFlash reads information specific
to the microcontroller you specified, including the ID in form of a signa-
ture or device ID (for Atmel ISP / TPI / PDI / UPDI), or in form of one
or more IDCODEs (for an STM32 controller 2 IDCODEs for core and
boundaryScan controller), as well as other parameters required for fla-
shing.

© halec 2025 27

Manual

roloFlash 2 V List of Supplied roloBasic Scripts

• Reads the ID(s) of the connected target and compares it to the values
from the database.

• Should the ID(s) mismatch (e. g. different microcontroller), the process
aborts with output of an error message.

• Erases the target‘s flash memory (mass erase).

• If specified by you: Your HEX file gets written to the target‘s flash me-
mory, while simultaneously getting verified.

• Atmel only: Your HEX file gets written to the target‘s EEPROM, while
simultaneously getting verified.

• Meanwhile, a green running light is shown, and if successful, LED 5
lights up green at the end.

• Writes results to log file (LOG.TXT).

4 Read

Location:

• In directory scripts\STM32:

• STM32_F1_F3\JTAG\read\RUN_V07.BAS

• STM32_F1_F3\SWD\read\RUN_V07.BAS

• STM32_F2_F4_F7\JTAG\read\RUN_V07.BAS

• STM32_F2_F4_F7\SWD\read\RUN_V07.BAS

• STM32_H7\JTAG\read\RUN_V07.BAS

• STM32_H7\SWD\read\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\ISP\read\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\TPI\read\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\PDI\read\RUN_V07.BAS

• scripts\Microchip_Atmel\AVR\UPDI\read\RUN_V07.BAS

Preparation:

• This script is available in a version for STM32, Atmel ISP, Atmel TPI,
Atmel PDI and Atmel UPDI microcontrollers, respectively.

© halec 2025 28

Manual

roloFlash 2 V List of Supplied roloBasic Scripts

• To use it, copy the version of the script matching your microcontroller
as RUN_V07.BAS to the microSD card‘s root directory.

• Subsequently adapt the name of your target and the filename of the
HEX file for the flash memory in the script (for Atmel: Optionally, you
can specify another HEX file for the EEPPROM).

• Optionally, you can adapt the bus speed as well as roloFlash‘s CPU
frequency.

• Start the compiler using „compile_v07.bat“ in order to create the requi-
red RUN_V07.BIN from RUN_V07.BAS

Function:

• Starts a running light from LED 4 to LED 1 to visualize the reading
process.

• Removes a possibly existent previous LOG.TXT file.

• Opens the appropriate bus for the target.

• From the internal target database, roloFlash reads information specific
to the microcontroller you specified, including the ID in form of a signa-
ture or device ID (for Atmel ISP / TPI / PDI / UPDI), or in form of one
or more IDCODEs (for an STM32 controller 2 IDCODEs for core and
boundaryScan controller), as well as other parameters required for fla-
shing.

• Reads the ID(s) of the connected target and compares it to the values
from the database.

• Should the ID(s) mismatch (e. g. different microcontroller), the process
aborts with output of an error message.

• If specified by you: The target‘s flash memory gets completely read
out and written to the HEX file specified.

• Atmel only: If specified by you: The target‘s EEPROM gets completely
read out and written to the HEX file specified.

• Meanwhile, a green running light is shown, and if successful, LED 5
lights up green at the end.

• Writes results to log file (LOG.TXT).

© halec 2025 29

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

VI roloFlash API (List of Procedu-
res and Functions)

API (Application Programming Interface) means the interface roloBasic
needs to access all roloFlash specific procedures and functions.

Procedures:

Procedures do not have a return value. Specified parameters must
be given without parentheses.

Example:

delay 1000

Functions:

Functions have a return value. Specified parameters must be given
in parentheses.

Example:

handle = fs_open(0, "TEST.TXT")

If the function does not have any parameters, the parentheses can
be dispensed with.

Example:

value = getTargetBoardVoltage

or

value = getTargetBoardVoltage()

Letter Case:

roloBasic is case-insensitive, but for the sake of better readability,
the following conventions are used:

© halec 2025 30

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• Compounds of multiple words in names of functions, procedures
and variables: the first letter of a name (and of the first word after
an underscore ("_")) is a lower-case character, all other words
start with an upper-case character. Example:
loaderUsed = target_getLoaderUsage(targetHandle)

• Constants are completely upper-case. Example:
target_writeFromFile targetHandle, 0, fileName,
HEX, FLASH, WRITEVERIFY

1 Internal Database

roloFlash has an integrated database containing information for many tar-
gets. This information serves the following purposes:

• To check in roloBasic if it is really the desired target that is connec-
ted (e. g. JTAG IDCODE, Atmel signature or device ID).

• To provide data required for flashing.

Using the name of the desired controller, you can obtain a handle from the
database and utilize it to request further information. This handle does not
have to be closed afterwards.

1.1 db_getHandle

Get database handle for specified target.

dbHandle = db_getHandle(<name>)

Prerequisites:

- none

Parameters:

name

Name of target. The name stored in the database might be abbrevia-
ted, e. g. if there are multiple targets differing only e. g. in their circuit

© halec 2025 31

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

packaging type (DIL, PLCC, QFP, BGA, ...) while having otherwise
identical parameters. Please look up the correct name for your con-
troller in the list of supported microcontrollers in chapter "Specificati-
ons", and mind the letter case.

Return value:

- a database handle. Can be used to get information about target using
db_get.

Exceptions:

unknownTarget Target is unknown in target database
apiTypeFault Invalid data type for "name"

1.2 db_get

Inquire information about specific properties of a target.

Value = db_get(<dbHandle>, <property>)

Prerequisites:

- valid database handle

Parameters:

dbHandle

Handle for accessing the database, see db_getHandle

property

Type of information to determine. Not all properties are available for
all database handles. In case a property cannot be determined, an
exception is generated. Possible values for "property" are:
DB_NAME: Name of target. (Can be shorter than the name used for
getting the database handle)
DB_FAMILY: A value denoting membership of a certain family of mi-

© halec 2025 32

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

crocontrollers. This value is required to obtain a target handle (see
target_open).
DB_COREIDCODE: In case of a JTAG device: IDCODE of target
DB_BOUNDARYSCANIDCODE : In case of a JTAG device, the tar-
get can contain an additional Boundary Scan JTAG device, the ID-
CODE of which is stored in this property.
DB_FLASHSIZE: Size of flash memory in bytes.
DB_FLASHPAGESIZE: Page size in bytes for writing of memory with
certain page sizes (e. g. Atmel AVR and Atmel Xmega).
DB_EEPROMSIZE: Size of EEPROM in bytes.
DB_EEPROMPAGESIZE: Page size in bytes for writing of EEPROM
with certain page sizes (e. g. Atmel Xmega).
DB_DEVICEID: Device ID or Signature (e. g. Atmel) (array with 3
bytes)

Return value:

- Value of inquired property

Exceptions:

propertyNotFound The desired value is unknown or does not exist
(e. g. DB_COREIDCODE for non-JTAG targets)

apiTypeFault Invalid data type for dbHandle or property

2 Busses

Principally, roloFlash considers every interface, that can be used to flash a
target, to be a bus.

This holds true even if the interface inherently allows only one microcon-
troller to be connected (e. g. the ISP interface for Atmel AVR is construed
as bus).

• Generally, a bus must be opened first.

• While trying to open a bus, it is checked if the bus is available. If it is
already opened, an exception is generated (resourceUnavailable).
The same exception is generated if another bus is already open its

© halec 2025 33

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

signals or internal resources would overlap with the bus to be ope-
ned.

• A microcontroller (target) attached to a bus can be addressed only
after obtaining a target handle from this bus.

• The connection to a target handle can be closed again.

• A bus can be closed, too. In this case, the signal lines affected be-
come high-impedance again.

2.1 bus_open

busHandle = bus_open(<busType>, <indexOfBus>,
<speed>...)

Opens the appropriate bus of type <busType> and provides a bus handle.
Depending on the bus, one or more signal lines could be initialized in the
process.

Depending on the bus used, there can be further parameters. Usually, a
bus speed is specified; if not, you can look up the appropriate function in
the respective subchapter of the bus used.

Prerequisites:

- none

Parameters:

busType

Determines the type of bus to be opened. Available busses are:

• JTAG
• SWD
• ISP
• PDI
• UPDI
• TPI
• UART

indexOfBus

© halec 2025 34

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Specifies the number of the bus to be opened. The first bus has in-
dex 0.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash. Supported bus
speeds are listed in the appropriate subchapter for the bus used.

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value.

Return value:

- a bus handle. This can be used to call other functions, e. g. target_open.

Exceptions:

apiValueRange Invalid value for index or speed
apiTypeFault Invalid type for index or speed
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.2 bus_close

bus_close <busHandle>

Closes the given bus. The affected signal lines become deactivated in the
process.

If the bus happens to have open targets present, these targets become
detached and their target handles become invalid.

Prerequisites:

- valid bus handle

© halec 2025 35

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Parameters:

busHandle

The bus handle for the open bus.

Return value:

- none (procedure)

Exceptions:

invalidHandle Handle has been closed already
apiTypeFault Invalid type for busHandle

2.3 bus_setSpeed

bus_setSpeed <busHandle>, <speed>

Changes the speed of an already open bus. The maximal speed gets cap-
ped to „speed“. If a target is connected to this bus, the programming speed
of the target results from the specified speed.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

speed

© halec 2025 36

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash. Supported bus
speeds are listed in the appropriate subchapter for the bus used.

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value.

Note for JTAG and SWD bus, respectively:

It is possible that bus_scan scans the JTAG or SWD chain slower than the
specified value. The value given is, however, relevant to all other transfers.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for speed
apiTypeFault Invalid type for busHandle or speed

2.4 bus_getSpeed

speed = bus_getSpeed(<busHandle>)

Queries the current bus speed for an open bus. It can be the same or less
than the bus speed specified with bus_open or bus_setSpeed, respective-
ly.

© halec 2025 37

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

Return value:

- Bus speed in Hz

Exceptions:

apiTypeFault Invalid type for busHandle

2.5 JTAG and SWD Bus

General information about busses are in the superior chapter. Based on it,
this chapter elaborates on behavior specific to the JTAG and SWD bus-
ses.

2.5.1 JTAG Chain

JTAG chain with up to 10 devices are supported.

The function bus_scan scans the JTAG chain and returns an array with
the founded IDCODEs.

To open a JTAG devices with the function open_target, the index of the
device to be selected, has to be given.

2.5.2 bus_open(JTAG/SWD, …) and available speeds

busHandle = bus_open(JTAG, <indexOfBus>, <speed>)

or

busHandle = bus_open(SWD, <indexOfBus>, <speed>)

© halec 2025 38

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Opens the JTAG or SWD bus, respectively, and initializes the signal lines.
The maximal bus speed gets capped to „speed“. Sets the programming
speed for the target.

Prerequisites:

- none

Parameters:

busType

• JTAG for JTAG bus.
• SWD for SWD bus.

index

Must be 0 (there is only one bus in each case).

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500

© halec 2025 39

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000 98684 97402 96153 94936
 93750 92592 91463 90361 89285
 88235 87209 86206 84745 83333
 81967 80645 79365 78125 76923
 75757 74626 73529 72463 71428
 70422 69124 67873 66666 65502
 64377 63291 62240 61224 60000
 58823 57692 56603 55555 54545
 53380 52264 51194 50167 49019
 47923 46875 45871 44776 43731
 42613 41551 40540 39473 38461
 37406 36319 35294 34246 33185
 32119 31055 30000 28957 27932
 26929 25906 24875 23847 22831
 21802 20775 19762 18750 17730
 16722 15706 14705 13698 12690
 11682 10676 9671 8670 7668
 6666 5664 4662 3661 2660
 1659

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000
 93750 88235 83333 78947 75000
 71428 68181 65217 62500 60000
 57692 55555 53571 51724 50000
 48387 46875 45454 44117 42857
 41666 40540 39473 38461 36585
 34883 33333 31914 30612 29411

© halec 2025 40

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 28301 27272 25862 24590 23437
 22388 21126 20000 18987 17857
 16853 15789 14705 13636 12605
 11538 10489 9433 8426 7425
 6410 5395 4385 3378 2377
 1376

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value.

Note:

After calling bus_open(JTAG, <indexOfBus>, <speed>), it might be
necessary to call bus_enforceJTAG <busHandle> afterwards, in case
the target is in SWD mode.

Note:

It is possible that bus_scan scans the JTAG or SWD chain slower than the
specified value. The value given is, however, relevant to all other transfers.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed
again using bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. target_open

© halec 2025 41

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for index or speed
apiTypeFault Invalid type for index or speed
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.5.3 bus_enforceJTAG

bus_enforceJTAG <busHandle>

Ensures that targets capable of the SWD protocol are in JTAG mode. If
the target is in SWD mode, it gets switched to JTAG mode.

Prerequisites:

- valid bus handle

Parameters:

busHandle

The bus handle for the JTAG or SWD bus, obtained via bus_open.

Note:

If the target is already in JTAG mode, nothing changes. The impact of this
command on targets not capable of SWD, especially not having an ARM
core, are unkown. Therefore, the following is not recommended:

• Use this command when you expect targets capable of SWD and
want to make sure that these are in SWD mode.

• In this case, use this command after opening the bus and before
scanning of the bus:

busHandle = bus_open(JTAG, <indexOfBus>, <speed>)
bus_enforceJTAG busHandle

© halec 2025 42

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

idCodes = bus_scan(<busHandle>)

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for busHandle

2.5.4 bus_enforceSWD

bus_enforceSWD <busHandle>

Ensures that targets capable of the SWD protocol are in SWD mode. If the
target is in JTAG mode, it gets switched to SWD mode.

Prerequisites:

- valid bus handle

Parameters:

busHandle

The bus handle for the JTAG or SWD bus, obtained via bus_open.

Note:

If the target is already in SWD mode, nothing changes. The impact of this
command on targets not capable of SWD, especially not having an ARM
core, are unkown.

As opposed to bus_enforceJTAG, bus_enforceSWD gets called automati-
cally when calling bus_open(SWD, <indexOfBus>, <speed>) (and thusly

© halec 2025 43

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

the bus definitely gets switched to SWD), as this sequence is part of the
SWD specification.

Therefore, the following is recommended:

• This command is only necessary for special situations (e. g. wor-
king in JTAG mode, then setting the target to SWD mode just befo-
re removing roloFlash).

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for busHandle

2.5.5 bus_scan

idCodes = bus_scan(<busHandle>)

Executes a scan on the JTAG or SWD bus and returns an array with the
IDCODES of the JTAG / SWD devices found.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

Return value:

- an array with IDCODEs. JTAG devices not supported are represented as
a "0". For SWD, currently only one device is supported.

© halec 2025 44

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for index or speed
apiTypeFault Invalid bus handle for the JTAG or SWD bus

2.5.6 bus_configure

(JTAG bus only)

bus_configure <busHandle>, <index>, <drWidth>

Configures the JTAG bus for subsequent calls of bus_transceive.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

index

The index of the JTAG device in the JTAG chain, that is to be ad-
dressed.

drWidth

Width of the DR register.

Return value:

- none (procedure)

© halec 2025 45

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for index or drWidth.
apiTypeFault Invalid bus handle for the JTAG or SWD bus

2.5.7 bus_transceive

(Not for SWD, see bus_write and bus_read)

answerArray = bus_transceive(<busHandle>, <scanType>,
<dataArray>

Transmits and receives a JTAG transfer.

Prerequisites:

- valid bus handle

- previous call to bus_scan

- previous call to bus_configure

Parameters:

busHandle

Bus handle obtained from bus_open.

scanType

IR scan or DR scan:
DRSCAN: DR scan with the width specified via bus_configure
IRSCAN: IR scan with the width determined by bus_scan

dataArray

An array of type char, int or long with enough elements to provide the
required number of bits. The least significant bits are used. You can-
not use a Vari array.
Example: if the DR register is 35 bits wide and a long array is used,
then this array needs at least 2 elements. The datum at position 0 is
used completely, and the lowest 3 bits of the datum at position 1 are
used.

© halec 2025 46

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Notes:

- With this command, you can directly communicate with JTAG devices,
even if they are not supported by roloFlash.

- If you communicate with a target that is also to be worked on using rolo-
Flash functions with support for this target, interdependencies cannot be
ruled out.

Return value:

- An array with the same type as specified per dataArray, and with a suita-
ble number of elements to store the answer.

Exceptions:

apiValueRange Invalid value for index or ScanType.
apiTypeFault Invalid bus handle for the JTAG bus

Invalid dataArray

2.5.8 bus_write

(Not for JTAG, see bus_transceive)

bus_write <busHandle>, <apacc_dpacc>, <armRegister,
<data>

Transmit an SWD transfer.

Prerequisites:

- valid bus handle

Parameters:

© halec 2025 47

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

busHandle

Bus handle obtained from bus_open.

apacc_dpacc

write as APACC or DPACC:
APACC: write as APACC
DPACC: write as DPACC

armRegister

Index of ARM-Registers to be addressed. Value range is 0..3. There
are no constants for these values; the following values can be used:
0 : CSW
1 : TAR
3 : DRW
Note: This corresponds to the address offset of the respective 32 bits
sized AHB-AP registers, divided by 4.

data

32 bits of data.

Notes:

- With this command, you can directly communicate with SWD devices,
even if they are not supported by roloFlash.

- If you communicate with a target that is also to be worked on using rolo-
Flash functions with support for this target, interdependencies cannot be
ruled out.

Return value:

- none (procedure)

© halec 2025 48

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for apacc_dpacc or armRegister.
apiTypeFault Invalid bus handle for the SWD bus.

2.5.9 bus_read

(Not for JTAG, see bus_transceive)

data = bus_read(<busHandle>, <apacc_dpacc>, <armRegis-
ter, <data>

Receives an SWD transfer.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

apacc_dpacc

write as APACC or DPACC:
APACC: write as APACC
DPACC: write as DPACC

armRegister

Index of ARM-Registers to be addressed. Value range is 0..3. There
are no constants for these values; the following values can be used:
0 : CSW
1 : TAR
3 : DRW
Note: This corresponds to the address offset of the respective 32 bits
sized AHB-AP registers, divided by 4.

© halec 2025 49

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Notes:

- With this command, you can directly communicate with SWD devices,
even if they are not supported by roloFlash.

- If you communicate with a target that is also to be worked on using rolo-
Flash functions with support for this target, interdependencies cannot be
ruled out.

Return value:

- 32 bits of data.

Exceptions:

apiValueRange Invalid value for apacc_dpacc or armRegister.
apiTypeFault Invalid bus handle for the SWD bus.

2.6 Atmel ISP Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the ISP bus.

2.6.1 bus_open(ISP, …) and Available Speeds

busHandle = bus_open(ISP, <indexOfBus>, <speed>)

Opens the ISP bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

Prerequisites:

- none

Parameters:

busType

© halec 2025 50

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

ISP for ISP bus.

indexOfBus

Must be 0 (there is only one bus in each case).

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000 98684 97402 96153 94936
 93750 92592 91463 90361 89285

© halec 2025 51

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 88235 87209 86206 84745 83333
 81967 80645 79365 78125 76923
 75757 74626 73529 72463 71428
 70422 69124 67873 66666 65502
 64377 63291 62240 61224 60000
 58823 57692 56603 55555 54545
 53380 52264 51194 50167 49019
 47923 46875 45871 44776 43731
 42613 41551 40540 39473 38461
 37406 36319 35294 34246 33185
 32119 31055 30000 28957 27932
 26929 25906 24875 23847 22831
 21802 20775 19762 18750 17730
 16722 15706 14705 13698 12690
 11682 10676 9671 8670 7668
 6666 5664 4662 3661 2660
 1659

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000
 93750 88235 83333 78947 75000
 71428 68181 65217 62500 60000
 57692 55555 53571 51724 50000
 48387 46875 45454 44117 42857
 41666 40540 39473 38461 36585
 34883 33333 31914 30612 29411
 28301 27272 25862 24590 23437
 22388 21126 20000 18987 17857
 16853 15789 14705 13636 12605
 11538 10489 9433 8426 7425
 6410 5395 4385 3378 2377
 1376

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value.

Note:

© halec 2025 52

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. getTar-
getPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.6.2 Configure Reset Mode

bus_resetMode <busHandle> <resetMode>

Sets the reset mode for the ISP bus.

After opening the ISP bus, the reset mode is set to pushpull, i. e.:

- If no reset is applied, the RST line is active high.

- If a reset is applied, the RST line is active low.

© halec 2025 53

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open

rstMode

- PIN_ACTIVELOW:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active low.

- PIN_ACTIVEHIGH:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active high.

- PIN_PUSHPULL:
 - If no reset is applied, the rST line is active high.
 - If a reset is applied, the RST line is active low.

- PIN_INVERTED:
 - If no reset is applied, the rST line is active low.
 - If a reset is applied, the RST line is active high.

Note:

- The rstModes PIN_ACTIVEHIGH and PIN_INVERTED are inverted,
compared to the usual reset functions and pull the line to high for a reset.
This is only useful for controllers the reset of which is active high. In this
case, PIN_INVERTED is recommended.

Return value:

- none.

Exceptions:

apiTypeFault Invalid type for busHandle

© halec 2025 54

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

2.7 Atmel TPI Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the TPI bus.

2.7.1 bus_open(TPI, …) and Available Speeds

busHandle = bus_open(TPI, <indexOfBus>, <speed>)

Opens the TPI bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

Prerequisites:

- none

Parameters:

busType

TPI for TPI bus.

indexOfBus

Must be 0 (there is only bus in each case)

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000

© halec 2025 55

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000 98684 97402 96153 94936
 93750 92592 91463 90361 89285
 88235 87209 86206 84745 83333
 81967 80645 79365 78125 76923
 75757 74626 73529 72463 71428
 70422 69124 67873 66666 65502
 64377 63291 62240 61224 60000
 58823 57692 56603 55555 54545
 53380 52264 51194 50167 49019
 47923 46875 45871 44776 43731
 42613 41551 40540 39473 38461
 37406 36319 35294 34246 33185
 32119 31055 30000 28957 27932
 26929 25906 24875 23847 22831
 21802 20775 19762 18750 17730
 16722 15706 14705 13698 12690
 11682 10676 9671 8670 7668
 6666 5664 4662 3661 2660
 1659

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000

© halec 2025 56

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000
 93750 88235 83333 78947 75000
 71428 68181 65217 62500 60000
 57692 55555 53571 51724 50000
 48387 46875 45454 44117 42857
 41666 40540 39473 38461 36585
 34883 33333 31914 30612 29411
 28301 27272 25862 24590 23437
 22388 21126 20000 18987 17857
 16853 15789 14705 13636 12605
 11538 10489 9433 8426 7425
 6410 5395 4385 3378 2377
 1376

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. getTar-
getPresent

© halec 2025 57

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.7.2 Configure Reset Mode

bus_resetMode <busHandle> <resetMode>

Sets the reset mode for the TPI bus.

After opening the TPI bus, the reset mode is set to pushpull, i. e.:

- If no reset is applied, the RST line is active high.

- If a reset is applied, the RST line is active low.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open

rstMode

- PIN_ACTIVELOW:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active low.

- PIN_ACTIVEHIGH:
 - If no reset is applied, the RST line is high-impedance.

© halec 2025 58

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 - If a reset is applied, the RST line is active high.

- PIN_PUSHPULL:
 - If no reset is applied, the rST line is active high.
 - If a reset is applied, the RST line is active low.

- PIN_INVERTED:
 - If no reset is applied, the rST line is active low.
 - If a reset is applied, the RST line is active high.

Note:

- The rstModes PIN_ACTIVEHIGH and PIN_INVERTED are inverted,
compared to the usual reset functions and pull the line to high for a reset.
This is only useful for controllers the reset of which is active high. In this
case, PIN_INVERTED is recommended.

Return value:

- none

Exceptions:

apiTypeFault Unzulässiger Typ für busHandle

2.8 Atmel PDI-Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the PDI bus.

2.8.1 bus_open(PDI, …) and Available Speeds

busHandle = bus_open(PDI, <indexOfBus>, <speed>)

Opens the PDI bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

© halec 2025 59

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- none

Parameters:

busType

PDI for PDI bus.

indexOfBus

Must be 0 (there is only one bus in each case).

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363

© halec 2025 60

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value. Atmel specifies the minimal bus
speed as 100 kHz. Values smaller than that get rounded to 100 kHz.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. getTar-
getPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

© halec 2025 61

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

2.9 Atmel UPDI / aWire Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the UPDI
bus and aWire bus, respectively.

2.9.1 bus_open(UPDI / AWIRE, …) and Available Speeds

busHandle = bus_open(UPDI, <indexOfBus>, <speed>)

busHandle = bus_open(AWIRE, <indexOfBus>, <speed>)

Opens the UPDI bus or aWire bus, respectively, and initializes the signal
lines. The maximal bus speed gets capped to „speed“. Sets the program-
ming speed for the target.

Prerequisites:

- none

Parameters:

busType

UPDI for UPDI bus or AWIRE for aWire bus.

indexOfBus

Must be 0 (there is only one bus in each case).

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

 500000 483870 468750 454545 441176
 428571 416666 405405 394736 384615
 375000 365853 357142 348837 340909
 333333 326086 319148 312500 306122

© halec 2025 62

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

 300000 294117 288461 283018 277777
 272727 267857 263157 258620 254237
 250000 245901 241935 238095 234375
 230769 227272 223880 220588 217391
 214285 211267 208333 205479 202702
 200000 197368 194805 192307 189873
 187500 185185 182926 180722 178571
 176470 174418 172413 170454 168539
 166666 164835 163043 161290 159574
 157894 156250 154639 153061 151515
 150000 148514 147058 145631 144230
 142857 141509 140186 138888 137614
 136363 135135 133928 132743 131578
 130434 129310 128205 127118 126050
 125000 123966 122950 120967 119047
 117187 115384 113636 111940 110294
 108695 107142 105633 104166 102739
 101351 100000 98684 97402 96153
 94936 93750 92592 91463 90361
 89285 88235 87209 86206 84745
 83333 81967 80645 79365 78125
 76923 75757 75000

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 375000 300000 250000 214285 187500
 166666 150000 136363 125000 115384
 107142 100000 93750 88235 83333
 78947 75000

If the specified frequency is unsupported, it gets rounded down inter-
nally to the next possible value. Atmel specifies the minimal bus
speed as 100 kHz. Values smaller than that get rounded to 100 kHz.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

© halec 2025 63

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. getTar-
getPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.10 UART

2.10.1 bus_open(UART, …) and Available Speeds

busHandle = bus_open(UART, <indexOfBus>, <baudrate>,
<dataBits>, <parity>, <stopbits>)

Opens one of the two UART interfaces and initializes the signal lines. The
parameters get configured as specified.

Prerequisites:

- none

Parameters:

busType

UART for UART interface

indexOfBus

© halec 2025 64

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- 0 for UART0 interface
- 1 for UART1 interface

baudrate

Baud rate in Hz. The achievable baud rates depend on the UART
used and on the CPU clock rate.

Baud rates other than the usual baud rates listed here are also possi-
ble. They must fit the range of specified minimal and maximmal valu-
es.

© halec 2025 65

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Table 1: UART0 Interface at CPU clock = 120 Mhz

Nominal [Hz] Actual [Hz] Deviation in %

Maximally
3750000

3750000 0

3000000 3000000 0

2000000 2000000 0

1000000 1000000 0

500000 500000 0

250000 250000 0

230400 230769 0,16

115200 115163 -0,03

76800 76824 0,03

57600 57581 -0,03

38400 38412 0,03

28800 28804 0,01

19200 19200 0

14400 14398 -0,01

9600 9600 0

4800 4800 0

2400 2400 0

Minimally 1200 1200 0

© halec 2025 66

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Table 2: UART0 Interface at CPU Clock = 24 Mhz

Nominal [Hz] Actual [Hz] Deviation in %

Maximally
375000

375000 0

250000 250000 0

230400 230769 0,16

115200 115384 0,16

76800 76923 0,16

57600 57692 0,16

38400 38461 0,16

28800 28846 0,16

19200 19230 0,16

14400 14388 -0,08

9600 9600 0

4800 4800 0

2400 2400 0

Minimally 1200 1200 0

© halec 2025 67

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Tabelle 3: UART1 Interface at CPU Clock = 120 Mhz

Nominal [Hz] Actual [Hz] Deviation in %

Maximally
1875000

1875000 0

1000000 1000000 0

500000 500000 0

250000 250000 0

230400 230769 0,16

115200 115384 0,16

76800 76726 -0,1

57600 57581 -0,03

38400 38412 0,03

28800 28790 -0,03

19200 19206 0,03

14400 14402 0,01

9600 9600 0

4800 4800 0

2400 2400 0

Minimally 1200 1200 0

© halec 2025 68

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Table 4: UART1 Interface at CPU Clock = 24 Mhz

Nominal [Hz] Actual [Hz] Deviation in %

Maximally
375000

375000 0

250000 250000 0

230400 230769 0,16

115200 115384 0,16

76800 76923 0,16

57600 57692 0,16

38400 38461 0,16

28800 28846 0,16

19200 19230 0,16

14400 14388 -0,08

9600 9600 0

4800 4800 0

2400 2400 0

Minimally 1200 1200 0

If the specified frequency is unsupported, it gets rounded up or down
internally to the next possible value.

databits

- 8 for 8 data bits

parity

- PARITY_NONE: no parity
- PARITY_EVEN: even parity
- PARITY_ODD: odd parity

stopbits

- 1 for 1 stop bit
- 2 for 2 stop bits

Note:

© halec 2025 69

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g. bus_write

Exceptions:

apiValueRange Invalid value for one of the parameters
apiTypeFault Invalid type for one of the parameters
resourceUnavailable The interface cannot be opened. Possible

causes:
- Interface has already been opened
- another bus has been opened, and opening
this interface simultaneously is impossible

2.10.2 bus_write

bus_write <busHandle>, <text>

Outputs the given text to the UART interface. Program execution conti-
nues after the output has been completed.

Prerequisites:

- valid bus handle

Parameters:

busHandle

bus handle obtained from bus_open

© halec 2025 70

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

text

text to be issued

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for busHandle or Text

2.10.3 bus_read

data = bus_read(<busHandle>)

Collects whatever amount of data has been received in the 512 byte recei-
ve buffer and provides it as char array in roloBasic. Execution is non-
blocking. The entirety of data received up to this point in time gets moved
to said char array. If there is no data, an array of length 0 will be returned.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

Return values:

- Char array with data collected

Exceptions:

apiTypeFault Invalid type for busHandle

© halec 2025 71

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3 Target in General

To obtain access to a target, a target handle has to be requested from a
previously opened bus. All functionality regarding the target is then carried
out specifying this very target handle. With roloFlash, every interface that
can be used to flash a target, is considered a bus. This holds true even if
the interface inherently allows only one microcontroller to be connected
(e. g. the ISP interface for Atmel AVR is construed as bus).

• Generally, the appropriate bus the target belongs to has to be ope-
ned beforehand.

• A microcontroller (target) attached to the bus can be addressed on-
ly after a target handle was obtained from the bus first.

• The connection to a target can be closed again.

• If a bus gets closed, the target gets closed, too.

3.1 target_open

targetHandle = target_open(<busHandle>, <index>, <fami-
ly>)

Enables access to a target and returns a target handle.

Note:

Only 1 target can be accessed at the same time, i.e. there may only be 1
open device handle.

Note:

This function does not check if a target is actually connected. If this is to
be checked, target_getPresent can be used.

© halec 2025 72

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle for the opened bus.

index

Determines which target on the bus gets opened. The manner of
counting depends on the bus. In most cases, the targets are numbe-
red consecutively, the first target has index 0.
For busses that only support one target, an index of 0 has to be spe-
cified.
Note:
With JTAG (e. g. STM32), it is possible that multiple targets corre-
spond to one microcontroller. A microcontroller can, for instance, an-
nounce two JTAG devices on the JTAG bus, one for the actual con-
troller, the other one for a boundary scan controller.
Note:
Please specify 0 for busses only supporting one target (e. g. ISP
bus).

family

This parameter determines the controller family the target controller
belongs to. Its value can be given either directly (see below) or identi-
fied by querying the internal database beforehand. Possible families:

• ATMELISP
• ATMELPDI
• ATMELUPDI
• ATMELTPI
• STM32F1
• STM32F2
• STM32F3
• STM32F4
• STM32F7
• STM32H7

© halec 2025 73

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- a target handle. It can be used to call other functionns, e. g.
target_getPresent.

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for busHandle or index
invalidHandle Invalid busHandle (e. g. already closed)

3.2 target_close

target_close <targetHandle>

Closes the given target.

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be closed.

Return value:

- none (procedure)

© halec 2025 74

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

invalidHandle The target handle or the corresponding bus has
already been closed

apiTypeFault Invalid type for targetHandle

3.3 target_getPresent

value = target_getPresent(<targetHandle>)

Detects if a target is connected. The operating mode remains unchanged.
The detection process always involves an actual communication with the
target, so that current information can be obtained.

Note for Atmel ISP bus:

If the target is in RunMode, it temporarily gets reset and put into Program-
Mode. At the end of the detection process, the reset signal gets supended
and the target reaches RunMode again. A program that might be running
on the target gets thusly restarted.

If the target is already in ProgramMode, the same query process applies,
but the target stays in ProgramMode all the time.

Note for Atmel PDI bus and Atmel UPDI bus:

A query over PDI/UPDI is carried out independently of the target being in
RunMode or ProgramMode. The target remains in the respective mode. A
reset does not take place.

Annotation:

With roloFlash, there should always be a target connected, as roloFlash
would not be powered otherwise. This function is intended mainly for rolo-
Flash variants that have their own power supply

It is also conceivable that roloFlash gets plugged onto something other
than a target. Therefore, this function establishes an actual communication
with the target.

© halec 2025 75

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- valid target handle

Parameters:

targetHandle

The target handle for the target to be addressed.

Return value:

0 = no target found

1 = target found

Exceptions:

invalidHandle The target handle or the corresponding bus has
already been closed

apiTypeFault Invalid type for targetHandle

The target can be in the following operating modes:

RunMode

Target runs normally, as if roloFlash was not connected.
ProgramMode

Target can be programmed (flashed).

The procedure target_setMode changes the operating mode.

Other procedures or functions depend on a certain operating mode. Whe-
re this is the case, it is detailed in the appropriate procedure or function
description.

© halec 2025 76

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.4 target_setMode

target_setMode <targetHandle>, <targetMode>

Puts both target and roloFlash into the given operating mode.

The target can be in the following operating modes:

RunMode

Target runs normally, as if roloFlash was not connected.
ProgramMode

Target can be programmed (flashed).

Other procedures or functions depend on a certain operating mode. Whe-
re this is the case, it is detailed in the appropriate procedure or function
description.

Prerequisites:

- valid target handle

Parameters:

targetHandle

The target handle for the target to be addressed.

targetMode

Specification of desired mode:
PROGRAMMODE: This mode is a requirement for the majority of
functions involving a target, especially for writing of flash memory. In
the course of this, the target can get stopped, depending on the tar-
get family.
RUNMODE: The target is running. If the target contains software, it
gets executed.

© halec 2025 77

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Note for JTAG bus and SWD bus:

• ProgramMode: Does not affect whether the target is currently running or
not. In this mode, only initializations for accessing target memory are
carried out.

• RunMode: Starts the target only if no previous write accesses to the tar-
get‘s flash memory have taken place.

Note for Atmel ISP-Bus:

• programMode: If the target is in RunMode, the target gets put into the
"Programming Enable Mode" and gets held in reset state. A program po-
tentially present on the target will be stopped in the process.

• runMode: The „Programming Enable Mode“ is suspended, as well as the
reset state. The targets starts running immediately afterwards.

Note for Atmel PDI bus:

• ProgramMode: Does not affect whether the target is currently running or
not. In this mode, only initializations for accessing target memory via PDI
are carried out.

• runMode: The PDI clock is stopped, and subsequently, the "Program-
ming Mode" is terminated. The target issues a reset and starts running.

Note for Atmel UPDI bus:

• programMode: If the target is in RunMode, the target gets put into the
"Programming Enable Mode" and gets held in reset state. A program po-
tentially present on the target will be stopped in the process.

• runMode: The „Programming Enable Mode“ is suspended, as well as the
reset state. The target starts running immediately afterwards.

• If the target is in "Programming Enable Mode" while roloFlash gets
removed, the target remains in this mode. A program potentially preset

© halec 2025 78

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

on the target does not start unless the target‘s power supply gets inter-
rupted for a short time. Starting the target can be forced by calling tar-
get_setMode with the parameter runMode, before removing roloFlash.
Alternatively, you can close the targetHandle using target_close.

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

3.5 target_restart

target_restart <targetHandle>

Restarts the target, which returns to the same operating mode:

RunMode

A reset is applied briefly, then deactivated. Therefore, the target
starts running from the beginning. RunMode is maintained.

ProgramMode

A reset cycle is applied, too, after which the ProgramMode gets re-
stored. Meanwhile, if there is a firmware present on the target, it
could have run for a short period of time.

It is recommended to employ this command only if it either cannot critically
do any harm, or if there is no firmware on the target.

Note for JTAG bus and SWD bus:

Since roloFlash conceptually does not consider the JTAG bus or SWD bus
to have a reset line, this command is not available. You can, however,
open the reset line as GPIO and trigger a reset yourself. As this is invisible
for roloFlash‘s JTAG and SWD communication module, roloFlash sees the

© halec 2025 79

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

target as remaing in its former operating mode, which might not match the
actual operating mode of the target. In case you want to trigger a reset for
the target, and want to continue working on it using roloFlash, please clo-
se the target handle for this target and request a new target handle after-
wards:

! Activate reset:
handle = GPIO_open(GPIO_RST, PIN_PUSHPULL, 0)

! Stay in reset for 100 ms:
delay 100

! Suspend reset by closing GPIO:
closeBus handle

! Closing and re-opening of the target to reset
! roloFlash‘s JTAG/SWD communication module:
target_close targetHandle

targetHandle = target_open(<bushandle>, <index>, <fami-
ly>)

Note for Atmel ISP bus:

The "Programming Enable Mode" as well as the reset get suspended. The
target starts running immediately afterwards.

RunMode

Reset gets activated briefly (100 ms), then deactivated again. There-
fore, the target starts running from the beginning. RunMode is main-
tained.

ProgramMode

Reset gets suspended briefly (3 ms), and ProgramMode gets resto-
red afterwards. Meanwhile, if there is a firmware on the target, it
could have run for a short period of time.

Application Example for Targets with Atmel ISP Interface:

© halec 2025 80

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

The procedure is necessary, e. g. when changing fuses on the target, and
the changes should be in effect immediately. This applies in particular for
activating a quartz for the target, which subsequently enables a higher
programming speed:

! Activate quartz to enable higher
! programming speeds:
target_writeBits(targetHandle, FUSES_LOW, value)

! Activate the changes by using target_restart
target_restart targetHandle

bus_setSpeed(bushandle, 1000000) ! e.g. 1 MHz

target_writeFromFile ...

Note for Atmel PDI-Bus:

Altough the reset line is part of the PDI bus, it does not get used as such
for PDI. Consequently, the bus can be used without holding the target in
reset state.

RunMode

Reset gets activated briefly (100 ms), then deactivated again. There-
fore, the target starts running from the beginning. RunMode is main-
tained.

ProgramMode

The PDI bus is deactivated, a reset gets triggered (100 ms), then the
PDI bus gets activated again and ProgramMode gets restored. The
target starts running from the beginning.

Note for UPDI bus :

Since roloFlash conceptually does not consider the UPDI bus to have a re-
set line, this command is not available. However, if the reset line is availa-
ble on your target board‘s programming connector, you can open the reset
line as GPIO and trigger a reset yourself. As this is invisible for roloFlash‘s
UPDI communication module, roloFlash sees the target as remaing in its
former operating mode, which might not match the actual operating mode

© halec 2025 81

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

of the target. In case you want to trigger a reset for the target, and want to
continue working on it using roloFlash, please close the target handle for
this target and request a new target handle afterwards.

Prerequisites:

- valid target handle

Parameters:

targetHandle

The target handle for the target to be addressed.

Return value:

- none (procedure)

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

3.6 Read/Write Target Memory Map

For different memory types within the targets, roloFlash supports a so-cal-
led memory map. Depending on target and memory type, it can provide in-
formation about different properties of the memory; these properties can
configured by the user, some of them have to be configured before fla-
shing. Oftentimes, the required values can be found in the database.

The example scripts are a good starting point here.

3.6.1 target_setMemoryMap

target_setMemoryMap <targetHandle>, <memType>, <memPro-
perty> <value>

© halec 2025 82

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Sets the specified property for the specified memory type to the value gi-
ven.

Prerequisites:

- valid targetHandle

Parameters:

targetHandle

Target handle for the target to be addressed

memType

Type of memory:

FLASH: Flash memory
RAM: RAM
EEPROM: EEPROM

memProperty

Memory property to be set:

MEM_STARTADDR: Start address of memory
MEM_SIZE: Size of memory in bytes
MEM_PAGESIZE: For some targets: Size of a memory page

value

The value to be set

Return value:

- none (procedure)

© halec 2025 83

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
FunctionNotSupported Invalid combination of MemType and Property
apiTypeFault Invalid type for targetHandle
ValueNotAllowed Invalid value

3.6.2 target_getMemoryMap

value = target_getMemoryMap(<targetHandle>, <memType>,
<memProperty>)

Determines the specified property‘s value for the given memory type.

Prerequisites:

- valid targetHandle

Parameters:

targetHandle

The target handle for the target to be accessed.

memType

Memory type:

FLASH: Flash memory
RAM: RAM
EEPROM: EEPROM

memProperty

Memory property:

MEM_STARTADDR: Start address of memory
MEM_SIZE: Size of memory in bytes
MEM_PAGESIZE: For some targets: Size of a memory page

© halec 2025 84

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- Determined value

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
FunctionNotSupported Invalid combination of MemType and Property
apiTypeFault Invalid type for targetHandle
valueUnknown Value cannot be determined

3.6.3 target_clearMemoryLayout

target_clearMemoryLayout <targetHandle>

Clears an existing memory layout (memory map).

Prerequisites:

- valid targetHandle

- target must be in ProgramMode

Parameters:

targetHandle

Target handle for target to be addressed

Return value:

- none (procedure)

© halec 2025 85

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

3.7 Loader

Some controller families are handled using a so-called loader.

In these cases, prior to using certain functions, a loader program has to be
loaded into the target‘s RAM and executed there. Depending on the target,
the loader is present within the roloFlash firmware or has to be present on
the microSD card:

Controller family Loader Functions using a loader

STM32L0,
STM32L1 and
STM32WB

<no loader>

STM32 <internal> target_writeFromFile mit memType = Flash
target_read mit memType = Flash

Atmel ISP <no loader>

Atmel TPI <no loader>

Atmel PDI <no loader>

Atmel UPDI <no loader>

Selection and activation of a suitable loader happens automatically, as
soon as a function is called that requires a loader (see above table). In
that case, roloFlash transfers the loader to the target and starts it right be-
fore execution of the called function.

The procedure target_setLoaderPreference allows specifying whether a
loader should be used (where possible).

The function target_getLoaderUsage determines if a loader will actually be
used.

© halec 2025 86

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Consequentially:

• You do not need to explicitely take care of the loader, it just needs
to be present on the microSD card (in case of an external loader).

• An application that might be present on the target will be stopped.

• After calling a function that needs a loader, the loader can stay acti-
ve and is available for other functions requiring a loader.

• Some parts of the target‘s RAM get modified.

Attribute With Loader Without Loader

Flash speed much faster slower
does not apply to Atmel ISP, TPI, PDI
and UPDI

RAM of the target is used and changed is unused and not changed

3.8 Erase, Write, Read and Verify Target

3.8.1 target_eraseFlash

target_eraseFlash <targetHandle>

Erases the target‘s entire Flash memory. With some targets, the EEPROM
gets automatically erased in the process, too (see Atmel fuse „EESAVE“).
Details can be found in the appropriate data sheet of a target.

Prerequisites:

- valid targetHandle

- target must be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

© halec 2025 87

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communikation with the target does not work.
invalidHandle Target handle or the appropriate bus has

already been closed.
apiTypeFault Invalid type for the target handle.

3.8.2 target_writeFromFile

target_writeFromFile <targetHandle>, <fileSystem>,
<fileName>, <fileFormat>, <memType>, <verify>, <star-
tAddr>, <cryptSpec>

Writes a file to the target‘s memory.

Prerequisites:

- valid target handle

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed

fileSystem

Specifies on which file system the file resides. Possible values are:
SDCARD, FLASHVARS, FLASHDISK.

fileName

© halec 2025 88

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

The requirements for file names apply, see chapter „Flash-Data“.

fileFormat

Format of given file. Possible values:

HEX: Intel-HEX format (ASCII file). (HEX32 can be used synony-
mously)
SREC: Motorola SREC format (S19, S28, S37, ASCII file). (S19, S28
and S37 can be used synonymously)
ELF: ELF format, which many compilers create as an intermediate
step. It often contains a lot of extra information not necessary for fla-
shing and which is therefore ignored.
RAW: Raw format (binary file with raw data and no address)

memType

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

verify

Specifies if verification should be carried out. Possible values:
WRITEONLY: Write without verification
VERIFYONLY: Data is verified only (nothing gets written to target
memory)
WRITEVERIFY: Write and verify

startAddr

(optional). This parameter is for raw format files only. As raw files do
not contain any address specification, this parameter is used to pass
that information to roloFlash.

cryptSpec

Optional parameter for writing of an encrypted file.
The parameter "padding" within the contained dataSpec can have
the following values:

• 0-15: Number of bytes that should be ignored after decryption.
• SEC_NOPADDING: Do not truncate data after decryption.

This mode can only applied with SEC_CTR and is recommen-
ded for it.

© halec 2025 89

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• SEC_PKCS7: After decryption, data gets truncated according
to PKCS7 padding. If the data does not comply with PKCS7,
an exception "paddingError" will be generated.

Return value:

- none (procedure)

Note for Verify = WRITEVERIFY

The data that has just been written to the target get read back from the tar-
get and compared to the data read from file. For this, said data do not get
read and decoded a second time from the microSD card, but the data copy
already buffered in roloFlash‘s RAM is used instead. This way, any read
faults regarding the microSD cards cannot be detected. However, with
HEX files, the contained CRC values are read out and verified, so that
reading errors are consequently unlikely.

If you want to further increase data integrity, use this function twice: First
with "verify = WRITEONLY" and then with "verify = VERIFYONLY". This
procedure may take longer than a single call with "verify = WRITEVE-
RIFY".

Note for HEX and SREC Files

Lines starting with ‘;‘ will be interpreted as comment and thusly ignored.

© halec 2025 90

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetMemoryLayout,
hexFileSize,
hexFileCRC,
hexFileSyntax,
srecRecordTypeTooSmall

See chapter „Exceptions of roloFlash“.

targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has

already been closed.
targetVerify During verification, mismatching data has been

read. Possible causes:
- Communication problems
- Data rate too high
- Target has not been erased previously (affects
predominantly flash memory)

<various file system
exceptions>

See chapter „Exceptions of the File System“.

cryptError General error in calculation.
secParamError The specified CryptSpec ist erroneous.
secPaddingError PKCS7 is specified, but decrypted data does not

conform to PKCS7 encoding.

3.8.3 target_readToFile

target_readToFile <targetHandle>, <fileSystem>, <file-
Name>, <fileFormat>, <memType>, <startAddr>, <length>

Reads from target memory, creates a new file, and writes the read data in-
to that file in the format specified.

Prerequisites:

- valid target handle

- target has to be in ProgramMode

Parameters:

targetHandle

© halec 2025 91

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Target handle for the target to be addressed.

fileSystem

Specifies on which file system the file resides. Possible values are:
SDCARD, FLASHVARS, FLASHDISK.

fileName

The requirements for file names apply, see chapter „Flash-Data“. If
the file exists, it will be overwritten.

fileFormat

File format to use for writing. Possible values:

HEX: Intel HEX format (ASCII file). If the address range is below 1
MB, the Extended Segment Address Record (type 02) will be used
(format I16HEX), otherwise, the Extended Linear Address Record
(type 04) will be used (format I32HEX).
HEX32: Intel HEX format (ASCII file). Independent of the address
range, the Extended Linear Address Record (type 04) will always be
used (Format I32HEX).
SREC: Motorola SREC format (ASCII file). Depending on the ad-
dress range, the smallest possible encoding is used (S19, S28 or
S37)
S19: Motorola SREC format in S19 format (ASCII file). If the address
range (64 kB) is insufficiently small, an exception addressTooBigFor-
FileFormat will be generated.
S28: Motorola SREC format in S28 format (ASCII file). If the address
range (16 MB) is insufficiently small, an exception addressTooBig-
ForFileFormat will be generated.
S37: Motorola SREC format in S37 format (ASCII file).
RAW: Raw format (binary file containing raw data without address
specification).

With Intel Hex Format and with Motorola SREC Format, you can opti-
onally specify the number of data bytes per line by combining it with
the the format specifier via the OR operator. If left unspecified, the
default value for the appropriate format is used (Intel Hex format: 16
bytes, Motorola SREC format: 32 bytes). Highest valid value is 255,
greater values lead to undefined behavior. While the Intel Hex for-
mats allow for 255 bytes, the maximum allowed value is a little less.

© halec 2025 92

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

The specified value will be automatically corrected to lie within the al-
lowed range. Therefore, specifying 255 automatically gives you the
maximum number of bytes per line.

With Intel Hex format and with Motorola SREC format, line endings
are encoded as <cr><lf>. If files should be encoded solely using <cr>
or <lf>, you can suffix the format using the OR operation with the
constant CR or LF.

Example: HEX32 or 64 or LF will generate I32HEX files with 64
bytes data per line and only <lf> as line endings.

memType

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

startAddr

First address to read from.

length

Number of bytes to read.

Return value:

- none (procedure)

Note for verification while reading

To achieve a verification similar to the one used when writing to the target,
you can verify the read file by subsequently calling target_writeFrom-
File with "verify = verifyOnly".

© halec 2025 93

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetMemoryLayout,
hexFileSize,
hexFileCRC,
hexFileSyntax and
srecRecordTypeTooSmall

See chapter „Exceptions of roloFlash“.

targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has

already been closed.
<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.8.4 target_write

target_write <targetHandle>, <dataArray>, <memType>,
<verify>, <startAddr>

Writes a roloBasic data array to the target‘s memory.

Prerequisites:

- valid targetHandle

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed

dataArray

A char array containing the data to be written.

memType

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

verify

© halec 2025 94

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Specifies if verification should be carried out. Possible values:
WRITEONLY: Write without verification
VERIFYONLY: Data is verified only (nothing gets written to target
memory)
WRITEVERIFY: Write and verify

startAddr

Target memory address to write the data to.

Return value:

- none (procedure)

Exceptions:

targetMemoryLayout See chapter „Exceptions of roloFlash“.
targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has

already been closed.
targetVerify During verification, different data has been read.

Possible causes:
- Communikation problems
- Data rate too high
- Target has not been erased previously (affects
predominantly Flash memory)

<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.8.5 target_read

DataArray = target_read(<targetHandle>, <memType>,
<startAddr>, <length>)

Reads from target memory, creates a roloBasic char array, and fills this ar-
ray with the data read from target.

Prerequisites:

- valid target handle

© halec 2025 95

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed.

memType

Which memory type to read from. This value is specific to the particu-
lar target family and is described in the respective chapters.

startAddr

First target memory address to read from.

length

Number of bytes to read.

Return value:

- char array with data read

Note for verification while reading

To achieve a verification similar to the one used when writing to the target,
you can verify the read file by subsequently calling target_write with
"verify = verifyOnly".

Exceptions:

OutOfMemory Insufficient memory available for creating
roloBasic array.

© halec 2025 96

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

targetMemoryLayout See chapter „Exceptions of roloFlash“.
targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has

already been closed.
<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.9 Target STM32

Currently, the following subfamilies are supported:

• STM32F0

• STM32F1

• STM32F2

• STM32F3

• STM32F4

• STM32F7

• STM32H7

• STM32L0 (without loader)

• STM32L1 (without loader)

• STM32L4

• STM32L4+

• STM32G0

• STM32WB (without loader)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

MemTypes:

Supported memTypes for writing:

• FLASH

• RAM (also for access to registers)

© halec 2025 97

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Supported memTypes for reading:

• FLASH

• RAM (also for access to registers)

• READMEMORY (for accesses to RAM, Flash and registers)

Parallelism:

For targets belonging to the families STM32F2, STM32F4, and STM32F7,
the flash parallelism for writing and erasing of the flash memory must be
chosen correctly, dependent on the power supply voltage (see respective
reference or programming manual by ST Microelectronics, keyword „Par-
allelism“).

For targets of the STM32H7 family, the parallelism for writing to flash me-
mory can be freely chosen.

Loader:

It is possible to use a loader (stored inside roloFlash) when using the follo-
wing functions:

• target_writeFromFile mit memType = FLASH

• target_write mit memType = FLASH

The advantage of a loader is the higher speed, at the cost of modifying the
target‘s RAM content. Choosing whether a loader is used or not is done
via the procedure target_setLoaderPreference.

No loader can be used in the following cases:

• STM32F2, STM32F4 and STM32F7 with parallelism of 8 or 32 bits

• STM32H7 with parallelism of 8 or 16 bits

• STM32L0, STM32L1 and STM32WB

In these cases, the loader will be automatically ignored.

3.9.1 target_setVoltageForParallelism

(Only STM32F2, STM32F4 and STM32F7)

© halec 2025 98

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

target_setVoltageForParallelism <targetHandle>, <volta-
ge>

Sets the flash parallelism to a value suitable for the specified target power
supply voltage.

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be addressed

voltage

Target power supply voltage in mV.

Return value:

- none (procedure)

Note:

Using this procedure saves you from manually determining the parallelism
suitable for the current power supply voltage.

If the parallelism is unsupported by the loader, the loader is not used.

Exceptions:

FunctionNotSupported This function supports only families STM32F2,
STM32F4 and STM32F7.

apiValueRange Invalid value for voltage.
invalidHandle The target handle or bus have already been

closed.
apiTypeFault Invalid type for one of the parameters.

© halec 2025 99

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.9.2 target_setParallelism

(Only STM32F2, STM32F4, STM32F7 and STM32H7)

target_setParallelism <targetHandle>, <parallelism>

Sets the flash-parallelism to be used.Parallelismus benutzt werden soll.

• For STM32F2, STM32F4 and STM32F7:
The parallelism specified must suit the power supply voltage. When
left unspecified, the default of 8 bits will be used, as this value is va-
lid for all supported voltages.

• For STM32H7:
The parallelism does not depend on the power supply voltage.
When left unspecified, the default of 32 bits will be used. This value
might change in future roloFlash firmwares.

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be addressed

parallelism

Flash-parallelism in bits. Valid values are 8, 16, and 32. 64-bit paral-
lelism, which needs an external power supply for programming, is
not supported.

Return value:

- none (procedure)

Note:

© halec 2025 100

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

This procedure can be used as an alternative to target_setVoltageForPar-
allelism, but you have to manually determine if the parallelism chosen is
suitable for the current power supply voltage.

If the parallelism is unsupported by the loader, the loader is not used.

Exceptions:

FunctionNotSupported This function only supports families STM32F2,
STM32F4, STM32F7 and STM32H7.

apiValueRange Invalid value for parallelism.
invalidHandle Target handle or bus has already been closed.
apiTypeFault Invalid type for one of the parameters.

3.9.3 target_getParallelism

(Only STM32F2, STM32F4, STM32F7 and STM32H7)

parallelism = target_getParallelism <targetHandle>

Returns the currently set value for flash-parallelism. It must match the cur-
rent power supply voltage.

Prerequisites:

- valid target handle

Return value:

- Parallelism in bits (8, 16 or 32)

Exceptions:

FunctionNotSupported This function only supports families STM32F2,
STM32F4, STM32F7 and STM32H7.

invalidHandle Target handle or bus have already been closed.

© halec 2025 101

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.9.4 target_setLoaderPreference

target_setLoaderPreference <targetHandle>, <loaderPre-
ference>

Specifies, if a loader shall be used (if possible).

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be addressed

loaderPreference

0: No loader will be used. In this mode, no RAM locations will be
changed during flashing.

else: If possible, as loader will be used. Using a loader, you
might achieve higher speeds while flashing. If a loader is
actually used, can be determined using
target_getLoaderUsage.

Return value:

- none (procedure)

Note:

If you do not call this function, a loader will be used, whenever possible. If
a parallelism has been configured for STM32F2, STM32F4, STM32F7 or
STM32H7 that is not supported by the loader, then the loader does not get
used. With STM32L0, STM32L1 and STM32H7, no loader will be used.

© halec 2025 102

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

FunctionNotSupported The function is not supported.
apiValueRange Invalid value for loaderPreference.
invalidHandle The target handle has already been closed, or

the bus is already closed.
apiTypeFault Invalid type for one of the parameters.

3.9.5 target_getLoaderUsage

loaderUsed = target_setLoaderUsage(<targetHandle>)

Determines if a loader will be used.

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

- 0: No loader will be used.

- 1: A loader will be used.

Exceptions:

invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

© halec 2025 103

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.10 Target Atmel AVR (ISP Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader will get used.

MemTypes:

Supported memTypes for writing:

• FLASH

• EEPROM

Supported memTypes for reading:

• FLASH

• EEPROM

3.10.1 target_getDeviceId

s = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the manu-
facturer‘s documents, depending on the controller. Independent of this, ro-
loFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

© halec 2025 104

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

Read out device ID or signature. The device ID gets returned in a byte-ar-
ray with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for target handle.

3.10.2 target_readBits

value = target_readBits(<targetHandle>, <index>)

Read out specified fuses or lock-bits as byte.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

Specifies which fuses or lock-bits to read. For this purpose, the follo-
wing constants are defined: FUSES_LOW, FUSES_HIGH,
FUSES_EXT and LOCK_BITS.
For controllers without extended fuses, the value returned for FU-
SES_EXT undefined (no exception is generated).

Return value:

Read out fuses or lock-bits as byte.

© halec 2025 105

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

Example:

Return value of $1E for FUSE_LOW on an ATMega8:

$1E is 00011110 in binary, so the following fuse bits are set:

• Bit 1 (CKSEL1)

• Bit 2 (CKSEL2)

• Bit 3 (CKSEL3)

• Bit 4 (SUT0)

• All other fuse bits in the lower fuses are reset (i.e. 0).

3.10.3 target_writeBits

target_writeBits <targetHandle>, <index>, <value>

Writes to the specified fuses or lock-bits.

Attention!

– Some bit combinations can render your chip useless. Please pay at-
tention to the values and check them in your controller’s documenta-
tion.

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute tar-
get_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

© halec 2025 106

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s ma-
nual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

index

Specifies which fuses or lock-bits to write to. For this purpose, the fol-
lowing constants are defined: FUSES_LOW, FUSES_HIGH, FU-
SES_EXT and LOCK_BITS.
For controllers without extended fuses, nothing gets written when
specifying FUSES_EXT (no exception is generated).

value

Fuse bits combination to be written as byte.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

Beispiel:

Setting the following fuse bits for FUSE_LOW on an ATMega8:

© halec 2025 107

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• Bit 1 (CKSEL1)

• Bit 2 (CKSEL2)

• Bit 3 (CKSEL3)

• Bit 4 (SUT0)

and resetting all other fuse bits in the low fuses corresponds to a binary
value of 00011110, i.e. hexadecimal $1E,so $1E has to be specified as
<value>.

3.10.4 target_setExtendedAddressMode

target_setExtendedAddressMode <targetHandle>, <value>

For controllers with 256 kB or more flash memory, the regular command
set is insufficient for programming over the ISP interface, instead, an ex-
tended address mode is required.

When configuring the flash memory size (via target_setMemoryMap
with memType = flash and memProperty = mm_size), this value gets set
automatically.

Using this function, this value can be overridden.

Prerequisites:

- valid targetHandle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

value

0: Do not use extended address mode
else: Use extended address mode

© halec 2025 108

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.11 Atmel TPI (TPI Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

MemTypes:

Supported memTypes for writing:

• FLASH

Supported memTypes for reading:

• FLASH

3.11.1 target_getDeviceId

s = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the manu-
facturer‘s documents, depending on the controller. Independent of this, ro-
loFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

© halec 2025 109

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-ar-
ray with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for target handle.

3.11.2 target_readBits

value = target_readBits(<targetHandle>, <index>)

Read out specified fuses or lock-bits as byte.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse byte 0 or configuration byte, respectively
Lock-Bits: for lock-bits

© halec 2025 110

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

Read out fuses or lock-bits as byte.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.11.3 target_writeBits

target_writeBits <targetHandle>, <index>, <value>

Writes the specified fuses or lock-bits.

Attention!

– Some bit combinations can render your chip useless. Please pay at-
tention to the values and check them in your controller’s documenta-
tion.

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute tar-
get_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s ma-
nual. For resetting, you can use the procedure target_restart.

© halec 2025 111

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse Byte 0 or configuration byte, respectively
Lock-Bits: for lock-bits

value

Fuse or lock bits combination to be written as byte.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.12 Target Atmel PDI (PDI Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

MemTypes:

Supported memTypes for writing:

• FLASH

• EEPROM

Supported memTypes for reading:

© halec 2025 112

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• FLASH

• EEPROM

3.12.1 target_getDeviceId

id = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-ar-
ray with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for TargetHandle.

© halec 2025 113

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.12.2 target_readBits

value = target_readBits(<targetHandle>, <index>)

Read out the specified fuses or lock-bits as byte.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse byte 0
1: Fuse byte 1
2: Fuse byte 2
3: <invalid>
4: Fuse byte 4
5: Fuse byte 5
6: <invalid>
7: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

Return value:

Read out fuse or lock-bits as byte.

© halec 2025 114

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.12.3 target_writeBits

target_writeBits <targetHandle>, <index>, <value>

Writes to the specified fuses or lock-bits.

Attention!

– Some bit combinations can render your chip useless. Please pay at-
tention to the values and check them in your controller’s documenta-
tion.

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute tar-
get_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s ma-
nual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

© halec 2025 115

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

index

0: Fuse byte 0
1: Fuse byte 1
2: Fuse byte 2
3: <invalid>
4: Fuse byte 4
5: Fuse byte 5
6: <invalid>
7: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

value

Fuse or lock bit combination to be written as byte.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.13 Target Atmel UPDI (UPDI-Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

MemTypes:

Supported memTypes for writing:

• FLASH

• EEPROM

• USERSIGNATURE

Supported memTypes for reading:

© halec 2025 116

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• FLASH

• EEPROM

• USERSIGNATURE

3.13.1 target_getDeviceId

id = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the manu-
facturer‘s documents, depending on the controller. Independent of this, ro-
loFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-ar-
ray with 3 bytes. This device ID can be compared with a device ID from
the target database.

© halec 2025 117

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for TargetHandle.

3.13.2 target_readBits

value = target_readBits(<targetHandle>, <index>)

Reads out specified fuses or lock-bits as byte.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index (from manufacturer documentation for ATtiny417/817)

0: WDTCFG
1: BODCFG
2: OSCCFG
3: <invalid>
4: TCD0CFG
5: SYSCFG0
6: SYSCFG1
7: APPEND
8: BOOTEND
9: <invalid>
10: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

© halec 2025 118

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

Read out fuses or lock-bits as byte.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.13.3 target_writeBits

target_writeBits <targetHandle>, <index>, <value>

Writes to the specified fuses or lock-bits.

Attention!

– Some bit combinations can render your chip useless. Please pay at-
tention to the values and check them in your controller’s documenta-
tion.

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute tar-
get_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

© halec 2025 119

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s ma-
nual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

index (from manufacturer documentation for ATtiny417/817)

0: WDTCFG
1: BODCFG
2: OSCCFG
3: <invalid>
4: TCD0CFG
5: SYSCFG0
6: SYSCFG1
7: APPEND
8: BOOTEND
9: <invalid>
10: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

value

Fuse or lock bits combination to be written as byte.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

© halec 2025 120

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

3.14 Target Atmel AVR32 (aWire-Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

MemTypes:

Supported memTypes for writing:

• FLASH

• RAM

Supported memTypes for reading:

• FLASH

• RAM

• READMEMORY

3.14.1 target_getDeviceId

id = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the manu-
facturer‘s documents, depending on the controller. Independent of this, ro-
loFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

© halec 2025 121

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-ar-
ray with 4 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for TargetHandle.

4 Flash-Data

The term "flash data" denotes an internal storage area in roloFlash that
can be accessed by the user as follows:

• with file system functions (fs_...)

• with flash data specific functions (fd_...)

This storage area (flash data) is subdivided into two sections:

• flash disk (constant: FLASHDISK)

• flash vars (constant: FLASHVARS)
 (Vars as abbreviation of "Variables")

which come in different size variants, depending on the roloFlash model:

© halec 2025 122

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Model Flash Disk* Flash Vars
roloFlash 2 640 kByte singleBuffer

 - or -
256 kByte doubleBuffer

16 kByte doubleBuffer

roloFlash 2 AVR 640 KByte singleBuffer
 - or -
256 kByte doubleBuffer

16 kByte doubleBuffer

*Flash disk: the specified size applies to this release. It is possible that the-
re will be other firmwares for roloFlash, that will implement other features,
at the expense of the size of the flash disk. Flash vars are not affected by
this.

Technical differences between flash disk and flash vars

• size

• flash vars cannot be reconfigured to singleBuffer

Use as file system

In both storage areas you can create, read, write files as can be expected
in a file system. The appropriate functions are described in the next chap-
ter, "Files". Flash disk and flash vars will generally behave like an SD card.

If the RUN_V07.BIN file and the data to be flashed onto the target both re-
side in the flash disk, you can completely do without using an SD card. A
RUN_V07.BIN file present on flash disk will take precedence over a poten-
tially present RUN_V07.BIN on SD card.

Other functions

Additionally, you can save arbitrary values under arbitrary IDs in these in-
ternal storage areas.

Requirements for IDs:

• Numbers, or

• arrays of char (strings, without restrictions on the characters used),
maximally 511 characters, case-sensitive, '/' is different from '\'

© halec 2025 123

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Possible values:

• Numbers, or

• arrays of char, arrays of int or arrays of long (except for vari-arrays)

CRC

Furthermore, values can be safeguarded with a CRC32, which will be au-
tomatically checked when reading a value..

Internal representation

The flash disk and flash vars storage areas are part of the internal flash
storage of roloFlash. This internal flash storage is organized in sectors
which can only be erased completely, a process that leads to ageing of the
flash cells. The microcontroller manufacturer guarantees 10,000 erase cy-
cles.

For this reason, quite some effort has been spent saving data in these sto-
rage areas as efficiently as possible, to prevent these erase cycles to oc-
cur too often.

Increment type

Oftentimes, values need to be stored that get incremented or decremented
by one time and time again. For especially efficient storage of such values,
the size of a bit field can be specified upon creation. This way, increme-
nting or decrementing by one can be done by erasing a single bit internal-
ly. With such a variable, you can implement a flash-cycle counter extreme-
ly efficiently.

DoubleBuffer versus SingleBuffer

In doublebuffer mode the storage area is subdivided into two equally lar-
ge blocks, where one block is always free. Therefore, there is less storage
space available. However, space occupied by deleted or overwritten data
will be freed again. Areas to be erased are marked internally. When a write
operation cannot be executed anymore, all data will be copied to the other
block and thusly, space occupied by deleted or overwritten data will be re-

© halec 2025 124

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

claimed. Afterwards, the write operation will be conducted. Before chan-
ging the storage block, roloFlash checks, if the write operation will be pos-
sible after the change. If that is not the case, the change will not be execu-
ted, as it does not lead to desired state.

In singlebuffer mode all of the storage area is contained in a single block.
Therefore, space occupied by deleted or overwritten data cannot be reclai-
med (except by fd_format). However, even in singlebuffer mode, the
doublebuffer algorithm will be used as long as possible. Thusly, you can
reclaim space occupied by deleted or overwritten data, but just while there
is still enough space to operate in doublebuffer mode internally.

Simulation of flash data functions for SD card

For many functions and procedures described in this chapter, a similar be-
havior will be simulated while using an SD card.

This enables testing processes with an SD card first and deploying them in
flash disk or flash vars.

<fileName> and <id>

Many file access functions (starting with "fs_", see next chapter) require a
parameter <fileName> for the file name.

This parameter corresponds to the parameter <id> for many flash data
functions (starting with "fd_" in this chapter).

If the chosen IDs conform to the file name requirements, both file access
functions and flash data functions can be used to access the data.

Atomic operations

Many functions are atomic: If a function designated as "atomic" is interrup-
ted by a failing power supply for roloFlash, the following is guaranteed:

• Data has been completely processed and stored.

or

• Data has not been stored at all (no changes).

© halec 2025 125

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

This behavior is only valid for flash data, not for SD card.

Intended purpose of flash disk versus flash vars

• Flash disk: Should be used mainly for larger and infrequently over-
written files like images for flashing or RUN_V07.BIN.

• Flash vars: Should be used mainly for smaller pieces of information,
like counters etc.

4.1 fd_write

fd_write <fileSystem>, <id>, <data>, <countingBytes>,
<crcMode>

Writes data with the specified ID. When id points to already existing data,
the existing data will be replaced. countingBytes can be used to specify
the size of a bit field. A CRC can be set.

Atomic:

- yes (behavior for SD card unspecified): In case of a power outage, data
is either completely taken over or not at all.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD: A file will be created on SD card, which is then used to
store the specified information. The file format used is specific to rolo-
Flash. The bitfield provided for the increment type in flash data will
not be created, but only simulated in its function.

© halec 2025 126

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

data

A number or an array of byte, array of int or array of long. For arrays
of byte, data can also be accessed using file system functions (star-
ting with "fs_").

countingBytes

(optional, values greater than 0 are only allowed, if <data> is a num-
ber, default = 0) For values greater than 0, an increment type is crea-
ted, and (at least) the number of bytes for the bit field is reserved. For
recurring calls of this function, this parameter does not have to be
specified, otherwise, it should have the same value. In this case, ro-
loFlash tries to represent the value internally by unsetting bits in the
bit field. If this is not possible, the increment type will be created an-
ew. Therefore, you do not need to pay attention whether the bit field
is sufficient for storing a value or not.

With the increment type, values getting incremented or decremented
often can be stored extremely efficiently, e.g. for use as a flash cycle
counter.

crcMode

(optional, default = NOCRC)
Possible values are:
NOCRC
USECRC (not applicable with increment type): A CRC32 checksum
is calculated and stored

Return value:

- none (procedure)

© halec 2025 127

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.2 fd_createArray

fd_createArray <fileSystem>, <id>, <size>, <type>,
<crcMode>

Creates an empty array of specified type and size. A CRC can be allowed
for (but not set). The array gets initialized with zeros.

Atomic:

- yes (behavior for SD card unspecified): In case of a power outage, data
is either completely taken over or not at all.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD: A file will be created on SD card, which is then used to
store the specified information. The file format used is specific to rolo-
Flash.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

size

© halec 2025 128

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Size in elements.

type

CHAR: Creates an array of char.
INT: Creates an array of int.
LONG: Creates an array of long.

crcMode

(optional, default = NOCRC)
Possible values are:
NOCRC
PLANNEDCRC: Since the array has not yet been written to, the CRC
cannot yet be calculated. This reserves the appropriate space for a
CRC to be added later. The CRC can later be calculated and stored
by means of fd_setCrc.

Return value:

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.3 fd_writeArrayElem

fd_writeArrayElem <fileSystem>, <id>, <index>, <data>

Overwrites data in the already present array specified by id at position
index.

You can only set bits in the process. Otherwise, an exception (flashWri-
teError) will be set. If the array has been created using fd_createArray,
all values are set to zero initially. This guarantees that every position can
be written to at least once.

Atomic:

© halec 2025 129

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- yes (behavior for SD card unspecified): In case of a power outage, data
is either completely taken over or not at all.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD: The specified change will be stored in the file already pre-
sent on SD card. The file format used is specific to roloFlash.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

index

Position where data should be written to.

data

Number within the value range of the array type.

Note regarding CRC:

As this procedure changes the array, no CRC must be set. Therefore, the
array must have been created by either fd_write without CRC or by
fd_createArray. The procedure fd_setCrc must not yet have been
called.

Return value:

© halec 2025 130

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.4 fd_writeSubArray

fd_writeSubArray <fileSystem>, <id>, <index>, <data>

Overwrites data in the already present array specified by id at position
index.

You can only set bits in the process. Otherwise, an exception (flashWri-
teError) will be set, in this case data remains completely untouched. If the
array has been created using fd_createArray, all values are set to zero
initially. This guarantees that every position can be written to at least once.

Atomic:

- no (behavior for SD card unspecified): In case of a power outage, array
data might only partly be taken over.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD: The specified change will be stored in the file already pre-
sent on SD card. The file format used is specific to roloFlash.
FLASHVARS
FLASHDISK

© halec 2025 131

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

index

Position for begin of data to be written.

data

An array of the same type.

Note regarding CRC:

As this procedure changes the array, no CRC must be set. Therefore, the
array must have been created by either fd_write without CRC or by
fd_createArray. The procedure fd_setCrc must not yet have been
called.

Return value:

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.5 fd_read

data = fd_read(<fileSystem>, <id>, <crcMode>)

Reads the data stored under the specified ID.

Atomic:

© halec 2025 132

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- Pure read function

Prerequisites:

- Data must be present under the specified ID. On SD cards, the data must
be in the roloFlash specific format, i.e. having been created by fd_write
or fd_createArray.

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

crcMode

(optional, default = TRYCRC)
Possible values are:
NOCRC: CRC does not have to be present. Will be ignored, if pre-
sent.
TRYCRC: CRC does not have to be present. Will be evaluated, if
present.
USECRC: CRC must be present and will be evaluated.

Return value:

- the requested data

© halec 2025 133

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.6 fd_readArrayElem

value = fd_readArrayElem(<fileSystem, <id>, <index>,
<crcMode>)

Reads an element from the array specified by id.

Atomic:

- Pure read function

Prerequisites:

- Data must be present under the specified ID. On SD cards, the data must
be in the roloFlash specific format, i.e. having been created by fd_write
or fd_createArray.

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

index

© halec 2025 134

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Eine Position innerhalb des Arrays, von der der Wert gelesen werden
soll. Der Index muss sich innerhalb des Arrays befinden.

crcMode

(optional, default = TRYCRC)
Possible values are:
NOCRC: CRC does not have to be present. Will be ignored, if pre-
sent.
TRYCRC: CRC does not have to be present. Will be evaluated, if
present.
USECRC: CRC must be present and will be evaluated.

Return value:

- The requested value

Note:

Under the specified ID, data with one of the array types must be present.

Exceptions:

dataTypeError Attempted access to data not of array type.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.7 fd_readSubArray

data = fd_readSubArray(<fileSystem, <id>, <index>,
<size>, <crcMode>)

Returns a subarray of the array specified by id.

Atomic:

- Pure read function

Prerequisites:

© halec 2025 135

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- Data must be present under the specified ID. On SD cards, the data must
be in the roloFlash specific format, i.e. having been created by fd_write
or fd_createArray.

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

index

Position within array, from which the data should be read.

size

Size of requested area (number of elements). The area specified by
index and size must be within the array.

crcMode

(optional, default = TRYCRC)
Possible values are:
NOCRC: CRC does not have to be present. Will be ignored, if pre-
sent.
TRYCRC: CRC does not have to be present. Will be evaluated, if
present.
USECRC: CRC must be present and will be evaluated.

Return value:

- Array with the requested data.

© halec 2025 136

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Note:

Under the specified ID, data of one of the array types must be present.

Exceptions:

dataTypeError Attempted access to data not of array type.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.8 fd_remove

fd_remove <fileSystem>, <id>

Deletes data stored under the specified ID.

Atomic:

- yes (behavior for SD card unspecified): In case of a power outage, data
is either completely taken over or not at all.

Note:

- the procedure corresponds to fs_remove, with the only difference being
able to specify a number for id in this procedure.

Prerequisites:

- SD card: The file specified by id must be open.

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK

id

© halec 2025 137

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- none (procedure)

Exceptions:

fileNotFound The specified file does not exist.
fileIsOpen The specified file is still open.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.9 fd_getItemCount

count = fd_getItemCount(<fileSystem>)

Determines number of stored elements.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

- Number of stored elements.

© halec 2025 138

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.10 fd_getId

id = fd_getId(<fileSystem>, <index>)

Determines the ID of the stored element with the specified index.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

- ID of the stored element with the specified index.

Note:

- Together with the function fd_getItemCount, all stored elements can
be accessed.

© halec 2025 139

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.11 fd_idExists

found = fd_idExists(<fileSystem>, <id>)

Determines if something is stored under the specified ID.

Atomic:

- Pure read function

Note:

- the function corresponds to fs_fileExists, with the only difference being
able to also specify a number for id in this function.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

0 = file does not exist

© halec 2025 140

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

1 = file exists

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.12 fd_isArray

isArray = fd_isArray(<fileSystem>, <id>)

Determines if an array is stored under the specified ID.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

© halec 2025 141

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

0 = no array (number or increment type)

1 = array of char, int or long

4.13 fd_getArraySize

size = fd_getArraySize(<fileSystem>, <id>

Determines number of elements for array specified by id.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

© halec 2025 142

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- Number of elements

Note:

Under the specfied ID, data of one of the array types must be present.

Exceptions:

dataTypeError Attempted access to data not of array type.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.14 fd_getType

myType = fd_getType(<fileSystem>, <id>)

Determines the type of the number or array stored under id.

A number is stored under id:
char, int or long, depending on the current value of the number

An array is stored under id:
char, int or long, depending on the type of the array elements

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card

© halec 2025 143

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- Type of data or type of elements for an array.

4.15 fd_getCountingBytes

count = fd_getCountingBytes(<fileSystem>, <id>)

For an increment type, this returns how many bytes have been reserved
for the bit field. The number might be slightly larger than originally reques-
ted. For all other types, this function returns 0.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.

© halec 2025 144

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- Number of bytes for the bitfield for increment type.

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.16 fd_setCrc

fd_setCrc <fileSystem>, <id>

Sets the CRC. The CRC must have been allowed for beforehand when
using fd_createArray with the parameter PLANNEDCRC. If the CRC has
been set already and is wrong, an exception is generated.

Atomic:

- yes (behavior for SD card unspecified): In case of a power outage, the
CRC is either set or remains unset.

Prerequisites:

- none

© halec 2025 145

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.17 fd_getCrc

crc = fd_getCrc(<fileSystem>, <id>)

Returns stored CRC, or 0, if the CRC has not been set yet.

Atomic:

- Pure read function

© halec 2025 146

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- if CRC has been set: value of stored CRC

- otherwise: 0

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.18 fd_calcCrc

crc = fd_calcCrc(<fileSystem>, <id>)

© halec 2025 147

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Calculates CRC for data specified by id. This can also be executed if a
CRC was not provided for.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

- calculated CRC

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

© halec 2025 148

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

4.19 fd_hasCrc

hasCrc = fd_hasCrc(<fileSystem>, <id>)

Determines if space for a CRC has been reserved for data specified by
id.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD: Reads the desired information from a file on SD card
which was previously created by roloFlash through functions
fd_write or fd_createArray.
FLASHVARS
FLASHDISK

id

A number or an array of byte. If SDCARD was specified as file-
System, id must be a valid file name for SD card.

Return value:

0 = no CRC provided for

© halec 2025 149

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

1 = CRC provided for

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.20 fd_getFreeMem

size = fd_getFreeMem(<fileSystem>)

Determines remaining free memory.

Note:

The behavior differs, depending on buffering mode: With doublebuffer mo-
de (and, as long as it is still possible in singlebuffer mode), memory of de-
leted or overwritten data is available immediately.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

© halec 2025 150

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

Size of free memory in bytes.

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.21 fd_getBytesWritten

count = fd_getBytesWritten(<fileSystem>)

Determines how many bytes in the specified storage area were written du-
ring the current power cycle. This enables an assessment of the effect on
flash memory ageing. E.g. incrementing or decrementing an increment
type has no influence on the result of this function, as long as the bitfield
can still store changes.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

Number of bytes written within this power cycle.

© halec 2025 151

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.22 fd_setSingleBufferMode

fd_setSingleBufferMode <fileSystem>, <value>

Reconfigures the memory area to doublebuffering or singlebuffering mode.
This happens without data loss. If this is not possible without losing data,
an exception is generated. In this case, data has to be deleted first, other-
wise, the memory area has to be formatted.

Atomic:

- Yes, switching modes will either be done completely or not at all. It is al-
so possible that switching will be completed upon next power up.

Prerequisites:

- Enough space to organize the data accordingly.

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (flash vars and SD card are not supported):
FLASHDISK

value

Boolean:
- 0: Memory will be switched to double buffering.
- 1: Memory will be switched to single buffering.

© halec 2025 152

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.23 fd_getSingleBufferMode

value = fd_getSingleBufferMode(<fileSystem>)

Determines if the specified storage area is set to singlebuffer or doublebuf-
fer mode.

Atomic:

- Pure read function

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

0 = doublebuffer mode

© halec 2025 153

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

1 = singlebuffer mode

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.24 fd_cleanup

fd_cleanup <fileSystem>

Physically overwrites deleted or overwritten values in memory (security
feature).

Atomic:

- no: in case of a power outage, it is possible that only a part of the obsole-
te data has been overwritten.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

- none (procedure)

© halec 2025 154

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

4.25 fd_format

fd_format <fileSystem>

Removes all data. As a security feature, data is physically overwritten in
flash memory.

Atomic:

- no: in case of a power outage, it is possible that only a part of the obsole-
te data has been overwritten.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are (SD card is not supported):
FLASHVARS and FLASHDISK

Return value:

- none (procedure)

© halec 2025 155

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

5 Files

File Systems:

Depending on the roloFlash version, the following file systems can
be accessed:

• SD card (constant: SDCARD)

• Flash vars (constant: FLASHVARS)

• Flash disk (constant: FLASHDISK)

Requirements for file names for the SD card :

• Filenames must follow the 8.3 rule: „XXXXXXXX.YYY“.

• Only characters „A“ - “Z“, “0“ - “9“, „_“ and „-“ are valid.

• Letters must be capital letters.

Requirements for directory names for the SD card:

• Directory names may contain eight characters at most: „XXXXXXXX“.

• Otherwise, the same conventions as for filenames apply.

• '/' (recommended) and '\' are treated equally.

Requirements for IDs (file names and directory names) for
flash data:

• You can use arbitrary strings (array of char) or numbers.

• For strings, all characters are allowed (incl. 0-character, Carrigage re-
turn and Linefeed), case-sensitive. Charactesr "/" and "\" are differentia-
ted.

© halec 2025 156

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Current directory is always the root directory:

• There is no „change directory“. The current path is always the root direc-
tory. Thusly, a filename must always contain the complete path.

• Both „/“ and „\“ are supported separators for separating directories and
file names within a path.

ATTENTION:
We recommend using "/" as path separator instead of "\" (used under
DOS and Windows).
If you want to use "\" as path separator, you have to double each occur-
rence of "\" (escape it), e.g "mysubdir\\myfile.txt".

All functions start with the prefix "fs_" ("fileSystem").

5.1 fs_mediaExists

bool fs_mediaExists(<fileSystem>)

Check if specified medium exists.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the function should be executed. Pos-
sible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

© halec 2025 157

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Note:

- SDCARD: Determines if an SD card is plugged in.

- FLASHVARS: Determines if the memory area FLASHVARS exists.

- FLASHDISK: Determines if the memory area FLASHDISK exists.

Return value:

0 = Medium does not exist

1 = Medium exists

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

5.2 fs_create

fs_create <fileSystem>, <fileName>, <size>

Creates the specified file. Afterwards, the file is still closed. If the file alrea-
dy exists, this procedure has no effect.

If you want to create a file and write something to it, you have to additio-
nally open it:

fs_create SDCARD, "TEST.TXT"

handle = fs_open(SDCARD, "TEST.TXT")

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

© halec 2025 158

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

fileName

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".
For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

size

Size of file to be created; the file is filled with zeros.
For SDCARD: the parameter is optional.
For Flash data: the parameter is required.

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for fileName.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.3 fs_rename

fs_rename <fileSystem>, <fileNameOld>, <fileNameNew>

Rename a file.

Prerequisites:

• <fileNameNew> must not exist previously.

• For SD card: If <fileNameOld> and <fileNameNew> contain
paths, then they must be identical.
For Flash data: No limitations.

Parameters:

© halec 2025 159

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

fileNameOld, fileNameNew

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".
For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

Return value:

- none (procedure)

Exceptions:

FileNotFound The specified file does not exist.
fileIsOpen The specified file is still open.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.4 fs_remove

fs_remove <fileSystem>, <fileName>

Remove the specified file or directory, if present.

Prerequisites:

- SD card: the file must not be open.

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

© halec 2025 160

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

fileName

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".
For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

Return value:

- none (procedure)

Exceptions:

fileNotFound The specified file does not exist.
fileIsOpen The specified file is still open.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.5 fs_mkDir

fs_mkDir <fileSystem>, <dirName>

Creates the specified directory. If it already exists, this procedure has no
effect.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed. Possible
values are:
SDCARD (FLASHVARS and FLASHDISK unsupported, no error message
will be generated).

For compatibility, a value of "0" is synonymous to SDCARD.

© halec 2025 161

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Note regarding FLASHVARS and FLASHDISK:

Nevertheless you can use file names containing "/" anywhere for all
flash data IDs and flash data file names, thereby emulating a file sys-
tem hierarchy.

dirName

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for dirName.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.6 fs_fileExists

bool fs_fileExists(<fileSystem>, <fileName>)

Checks if the specified file exists.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

fileName

© halec 2025 162

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".
For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

Return value:

0 = File does not exist

1 = File exists

Exceptions:

apiTypeFault Invalid type for fileName.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.7 fs_filesize

size = fs_filesize(<fileSystem>, <fileName>)

Determines the size of the specified file.

Prerequisites:

- File exists.

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

fileName

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".

© halec 2025 163

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

Return value:

Size of file in bytes.

Note:

When accessing FlashVars or FlashDisk, data of type "array of byte" must
be present under the specified file name.

Exceptions:

apiTypeFault Invalid type for fileName.
dataTypeError Attempted access to data not of type "array of

bytes" (on FlashVars or FlashDisk).
<various file system
exceptions>

See chapter „File System Exceptions“.

5.8 fs_open

fileHandle = fs_open(<fileSystem>, <fileName>)

Opens the specified file.

Prerequisites:

The file must already exist. If a new file should be opened, fs_create
must be used beforehand.

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

© halec 2025 164

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

fileName

For SD cards: The requirements for file names for SD cards apply,
see „Requirements for file names".
For Flash data: The file name must be a valid ID for Flash data, see
„Requirements for IDs".

Return value:

File handle for accessing the file (e. g. for fs_read and fs_write).
The file handle is also necessary for closing the file (fs_close).

Note:

When accessing FlashVars or FlashDisk, data of type "array of byte" must
be present under the specified file name.

Exceptions:

apiTypeFault Invalid type for fileName.
dataTypeError Attempted access to data not of type "array of

bytes" (on FlashVars or FlashDisk).
<various file system
exceptions>

See chapter „File System Exceptions“.

5.9 fs_read

a = fs_read(<fileHandle>, <position>, <count>)

Reads specified number of bytes from given file.

Prerequisites:

- Valid Filehandle (by means of fs_open).

Parameters:

fileHandle

The file handle returned by fs_open.

© halec 2025 165

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

position

Byte position that should be read from.

count

Number of bytes to be read.

Return value:

Array of byte with the data read out. The array has size count. If not
enough data could be read, the array is accordingly smaller. If you try to
read at the or after the end of file, an empty array with size 0 will be retur-
ned.

Exceptions:

apiValueRange Invalid value for fileHandle, position or count.
apiTypeFault Invalid type for fileHandle, position or count.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.10 fs_write

fs_write <fileHandle>, <position>, <array>

Writes the specified data into the given file.

Should the position be out of the current file size, the file gets filled with
random data up to that position.

Prerequisites:

- Valid Filehandle (returned by fs_open).

Parameters:

fileHandle

© halec 2025 166

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

The FileHandle returned by fs_open.

position

Byte position that should be written to.

array

Array of byte with the data to be written.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for fileHandle, position or count.
apiTypeFault Invalid type for fileHandle, position or count.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.11 fs_truncate

fs_truncate <fileHandle>, <len>

Truncates the file to the specified length. If the file is already smaller, this
procedure has no effect.

Prerequisites:

- Valid Filehandle (returned by fs_open).

Parameters:

fileHandle

The file handle returned by fs_open.

len

© halec 2025 167

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Length that the file should be truncated to.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for fileHandle.
apiTypeFault Invalid type for fileHandle or len.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.12 fs_close

fs_close <fileHandle>

Closes the file. This invalidates the given Filehandle, which thusly must not
be used anymore.

Prerequisites:

- Valid file handle (returned by fs_open).

Parameters:

fileHandle

File handle returned by fs_open.

Return value:

- none (procedure)

© halec 2025 168

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for fileHandle.
apiTypeFault Invalid type for fileHandle.
<various file system
exceptions>

See chapter „File System Exceptions“.

5.13 fs_sync

fs_sync <fileSystem>

Ensures that all data not yet written to the microSD card now does get
written to it. It is recommended to call this procedure, if write accesses to
the card occur.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility, a value of "0" is synonymous to SDCARD.

Return value:

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

© halec 2025 169

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

6 LEDs

Always only one LED simultaneously:

• Within roloBasic, only 1 LED can be lit at any one time, in order to redu-
ce the current load of the target as much as possible.

Numbering and Colors:

• The LED numbering in roloBasic is the same as on the roloFlash case.

• The LEDs can be lit green or red. For this, the constants COLOR_GREEN
and COLOR_RED are available.

Non-blocking:

• All procedures in this chapter are non-blocking. This means, e. g. that a
running light activated by led_runningLight runs in parallel to the
subsequent execution of roloBasic.

6.1 led_on

led_on <index>, <color>

Makes the given LED light up in the specified color.

Prerequisites:

- none

Parameters:

index

Number of LED

color

COLOR_GREEN or COLOR_RED

© halec 2025 170

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for index or color.
apiTypeFault Invalid type for index or color.

6.2 led_off

led_off

Turns off all LEDs.

Prerequisites:

- none

Parameters:

- none

Return value:

- none (procedure)

Exceptions:

- none

© halec 2025 171

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

6.3 led_blink

led-blink <index>, <color>, <speed>

Makes given LED flash with the given speed.

Prerequisites:

- none

Parameters:

index

Number of LED

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for index, color or speed.
apiTypeFault Invalid type for index, color or speed.

6.4 led_runningLight

led_runningLight <from>, <to>, <color>, <speed>

Starts a running light.

© halec 2025 172

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- none

Parameters:

from, to

The running light runs from LED 'from' to LED 'to'.
If 'from' is smaller than 'to', the light runs in the other direction.
If 'from' equals 'to', one LED is lit permanently.

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for from, to, color or speed.
apiTypeFault Invalid type for from, to, color or speed.

6.5 led_runningLightOutstanding

led_runningLightOutstanding <from>, <to>, <color>,
<speed>, <outstandingLedNumber>

Starts a running light with the specified LED having the opposite color.

Prerequisites:

- none

Parameters:

© halec 2025 173

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

from, to

The running light runs from LED 'from' to LED 'to'.
If 'from' is smaller than 'to', the light runs in the other direction.
If 'from' equals 'to', one LED is lit permanently.

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms

outstandingLedNumber

Number of LED that lights up in opposite color.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for from, to, color, speed or
outstandingLedNumber.

apiTypeFault Invalid type for from, to, color, speed or
outstandingLedNumber.

7 SecureApi

roloFlash can:

• calculate CRC32 checksums: sec_crc

• calculate hashes (MD5 and SHA1): sec_hash

• encrypt and decrypt data (AES 128, 192 and 256):
sec_encrypt and sec_decrypt

• flash encrypted files: target_writeFromFile

• execute encrypted roloBasic scripts: chain

© halec 2025 174

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Optional parameter „opstate“

For the first 3 of the aforementioned functions, there is an optional para-
meter „opstate“. It is used for marking start and end of data, for larger or
non-contiguous data:

• SEC_SINGLEBLOCK (default): Data consists of only one block.
This is the default value, and therefore is assumed if "opstate" is not
specified. Furthermore, it is identical to the sum of SEC_FIRST-
BLOCK and SEC_LASTBLOCK.

• SEC_FIRSTBLOCK: Must be set for the first block of data; a new
calculation will start.

• SEC_NEXTBLOCK: The block is neither the first nor the last block
in a calculation.

• SEC_LASTBLOCK: Must be set for the last block of data, in order
to finish the calculation.

For encryption and decryption:

Cryptspec is used in the following functions:

• decrypt / encrypt

• target_writeFromFile

• chain

cryptSpec:

cryptSpec is a Vari-Array containing exactly two more Vari-Arrays:
algoSpec and dataSpec.

algoSpec:

algoSpec is a Vari-Array with following parameters:

• algo(-rithm): currently, only AES is supported. Must always be the
constant SEC_AES.

• width: key length; valid values are 128, 192 and 256.

• mode: the AES mode.

© halec 2025 175

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

◦ SEC_ECB: electronic code book mode. Every block gets en-
crypted individually.
https://de.wikipedia.org/wiki/Electronic_Code_Book_Mode

◦ SEC_CBC: cipher block chaining mode. Before encrypting the
first block, an additional initialization vector gets XORed with the
clear text. For all other blocks, the encryption result of the pre-
vious block gets XORed with the clear text.
https://de.wikipedia.org/wiki/Cipher_Block_Chaining_Mode

◦ SEC_CTR: counter mode. Instead of the clear text, a counter
gets encrypted; 0 for the first block, then 1 etc. The result gets
XORed with the clear text. With this mode, you are not bound to
block sizes, as the data gets not processed by the algorithm. In-
stead, the algorithm creates a bit stream, that is used for XO-
Ring ig with the data. Padding is thusly neither necessary nor re-
commended.
https://de.wikipedia.org/wiki/Counter_Mode

dataSpec:

• dataSpec is a Vari-Array with following parameters:

• key: an array of char, array of int or array of long (except for vari-
Array), which contains the key.

• iv: (only for algoSpec mode SEC_CBC and SEC_CTR). An array of
char, array of int or array of long (except for vari-Array), which con-
tains the initialization vector.

• padding: padding with optional PKCS7:
https://en.wikipedia.org/wiki/PKCS_7
Depending on the individual function and on whether it is a decrypti-
on or encryption, there are different possibilities.

◦ 0-15: number of bytes to ignore after decryption.

◦ SEC_NOPADDING: do not apply padding. Recommended for
SEC_CTR.

◦ SEC_PKCS7: After decryption, data gets truncated according to
PKCS7 padding. If the data does not conform to PKCS7, an ex-
ception "paddingError" is generated. For encryption, padding
bytes will be appended beforehand, so the necessary block size
is reached.

© halec 2025 176

https://en.wikipedia.org/wiki/PKCS_7
https://de.wikipedia.org/wiki/Counter_Mode
https://de.wikipedia.org/wiki/Cipher_Block_Chaining_Mode
https://de.wikipedia.org/wiki/Electronic_Code_Book_Mode

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

7.1 sec_crc

crcValue = sec_crc(<array>, <crcSpec>, <opstate>)

 or

crcValue = sec_crc(<fileSystem>, <fileName>, <crcSpec>,
<opstate>)

Calculate the CRC-32 for an array or a file.

Prerequisites:

- none

Parameters:

array (for data)

An array of char, array of int or array of long (except for vari-Array),
which contains the data.

fileSystem (or for file)

Specifies on which file system the file resides. Possible values:
SDCARD, FLASHVARS, FLASHDISK.

fileName (or for file)

The requirements for file names apply, see chapter „Flash-Data“.

crcSpec

Specify constant SEC_CRC32.

opstate

(optional)
Required to calculate the CRC of the entirety of multiple pieces of da-
ta.

Return value:

© halec 2025 177

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- CRC Wert (auch als Zwischenergebnis bei opstate SEC_FIRSTBLOCK
oder SEC_NEXTBLOCK)

Note:

- Using opstate, the CRC value of the entirety of multiple arrays and files
(even mixed) can be calculated.

Exceptions:

secError - general error during calculation
- opstate was specified as SEC_NEXTBLOCK or
SEC_LASTBLOCK, without prior usage of
SEC_FIRSTBLOCK.

apiValueRange Invalid value for crcSpec or opstate.
apiTypeFault Invalid type for a parameter.

7.2 sec_hash

hashArray = sec_hash(<array>, <hashSpec>, <opstate>)

 or

crcValue = sec_crc(<fileSystem>, <fileName>,
<hashSpec>, <opstate>)

Calculates the MD5 hash or SHA1 hash for an array or a file. Hash functi-
ons can be used in roloBasic in order to calculate HMAC hashes (hashes
with keys).

Prerequisites:

- none

Parameters:

array (for data)

An array of char, array of int or array of long (except for vari-Array),
which contains the data.

fileSystem (or for file)

© halec 2025 178

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Specifies on which file system the file resides. Possible values:
SDCARD, FLASHVARS, FLASHDISK.

fileName (or for file)

The requirements for file names apply, see chapter „Flash-Data“.

hashSpec

Specify constant SEC_MD5 or SEC_HASH.

opstate

(optional)
Required to calculate hash value of the entirety of multiple pieces of
data.

Return value:

- 0 for opstate SEC_FIRSTBLOCK or SEC_NEXTBLOCK

- hash value in all other cases

Note:

- Using opstate, the CRC value of the entirety of multiple arrays and files
(even mixed) can be calculated. This enables calculation of HMAC.

Exceptions:

secError - general error during calculation
- opstate was specified as SEC_NEXTBLOCK or
SEC_LASTBLOCK, without prior usage of
SEC_FIRSTBLOCK.

apiValueRange Invalid value for hashSpec or opstate.
apiTypeFault Invalid type for a parameter.

7.3 sec_encrypt

sec_encrypt <array>, <cryptSpec>, <opstate>

Encrypt data in specified array using cryptSpec and the optional opstate.

© halec 2025 179

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- none

Parameters:

array

An array of char, array of int or array of long (except for vari-Array),
which contains the data. The length of the data must be a multiple of
the block size of the encryption (AES: 16 bytes).
Exceptions:

• dataSpec within cryptSpec contains SEC_PKCS7 as padding
algorithm, and it is the last block of data to be encrypted (i.e.
opstate not specified or specified as SEC_SINGLEBLOCK or
SEC_LASTBLOCK).

• cryptSpec contains SEC_CTR as algoSpec, and dataSpec in
cryptSpec contains SEC_NOPADDING as padding algo-
rithm, and it is the last block of data to be encrypted (i.e. op-
state not specified or specified as SEC_SINGLEBLOCK or
SEC_LASTBLOCK).

cryptSpec

Contains information about the encryption, including the key. The de-
finition can be found at the beginning of chapter "SecureAPI".

opstate

(optional)
Required for encrypting the entirety of multiple pieces of data.

Return value:

- none (procedure)

Note:

- When using PKCS7, it is recommended to create the array with a reserve
of 16 bytes, as the array can grow due to the padding. This facilitates the
internal memory management. Example for 1024 bytes:

array = reserve(char, 1024 + 16)

resize array , 1024

© halec 2025 180

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

- The encryption works on data in arrays. The roloBasic script collection
contains a function for encrypting and decrypting files.

Exceptions:

cryptError - general error during calculation
- opstate was specified as SEC_NEXTBLOCK or
SEC_LASTBLOCK, without prior usage of
SEC_FIRSTBLOCK.

secParamError The specified cryptSpec is faulty.
apiValueRange Invalid value for hashSpec or opstate.
apiTypeFault Invalid type for a parameter.

7.4 sec_decrypt

sec_decrypt <array>, <cryptSpec>, <opstate>

Decrypt data in specified array using cryptSpec and optional opstate.

Prerequisites:

- none

Parameters:

array

An array of char, array of int or array of long (except for vari-Array),
which contains the data. Except for SEC_CTR, the length of the data
must be a multiple of the block size of the encryption (AES: 16
bytes).
Exception:

• cryptSpec contains SEC_CTR as algoSpec, and dataSpec in
cryptSpec contains SEC_NOPADDING as padding algo-
rithm, and it is the last block of data to be encrypted (i.e. op-
state not specified or specified as SEC_SINGLEBLOCK or
SEC_LASTBLOCK).

cryptSpec

Contains information about the decryption, including the key. The de-
finition can be found at the beginning of chapter "SecureAPI".

© halec 2025 181

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

opstate

(optional)
Required for encrypting the entirety of multiple pieces of data.

Return value:

- none (procedure)

Note:

- The encryption works on data in arrays. The roloBasic script collection
contains a function for encrypting and decrypting files.

Exceptions:

cryptError - general error during calculation
- opstate was specified as SEC_NEXTBLOCK or
SEC_LASTBLOCK, without prior usage of
SEC_FIRSTBLOCK.

secParamError The specified cryptSpec is faulty.
secPaddingError PKCS7 is specified, but decrypted data does not

conform to the PKCS7 encoding.
apiValueRange Invalid value for hashSpec or opstate.
apiTypeFault Invalid type for a parameter.

8

9 GPIO Interface

9.1 GPIO_open

busHandle = GPIO_open(<index>, <mode>, <level>)

Opens one of the GPIO interfaces and initializes the lines. The mode is set
as specified. The state of the pin could possibly change.

© halec 2025 182

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Note:

- Pins TDO and RTCK can only be used as input.

Prerequisites:

- none

Parameters:

index

2 or GPIO_TMS for the TMS pin (pin 2)
4 or GPIO_TCK for the TCK pin (pin 4)
6 or GPIO_TDO for the TDO pin (pin 6)
7 or GPIO_RTCK for the RTCK pin (pin 7)
8 or GPIO_TDI for the TDI pin (pin 8)
9 or GPIO_GNDDET for the GND Detect pin (pin 9)
10 or GPIO_RST for the reset pin (pin 10)

mode

- PIN_INPUT: use this pin as input
- PIN_ACTIVELOW: use this pin as output, but drive it only active-
low.
- PIN_ACTIVEHIGH: use this pin as output, but drive it only active-
high.
- PIN_PUSHPULL: use this pin as output.

level

This value must not be specified for mode = PIN_INPUT. For all
other modes, this value denotes the output level for this pin (0 or 1).

Return value:

- A bus handle. This can be used to call other functions like GPIO_set.

© halec 2025 183

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

apiValueRange Invalid value for one of the parameters.
apiTypeFault Invalid type for one of the parameters.
functionNotSupported Pins TDO and RTCK can only be used as input.
BadArgumentCount Number of arguments is wrong.

Occurs if:
- both mode „PIN_INPUT“ and a level have been
specified,
- a mode other than „PIN_INPUT“, but no value
for „level“ has been specified.

resourceUnavailable The interface cannot be opened. Possible
causes:
- the interface has already been opened
- another bus has been opened, and cannot be
openend simultaneously with this GPIO

9.2 GPIO_setMode

GPIO_setMode <busHandle>, <mode>, <level>

Changes the mode of a GPIO pin. The mode is set as specified. The state
of the pin could possibly change.

Prerequisites:

- valid busHandle

Parameters:

busHandle

The busHandle returned by GPIO_open.

mode

- PIN_INPUT: use this pin as input
- PIN_ACTIVELOW: use this pin as output, but drive it only active-
low.
- PIN_ACTIVEHIGH: use this pin as output, but drive it only active-
high.
- PIN_PUSHPULL: use this pin as output.

© halec 2025 184

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

level

This value must not be specified for mode = PIN_INPUT. For all
other modes, this value denotes the output level for this pin (0 or 1).

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for one of the parameters.
apiTypeFault Invalid type for one of the parameters.
functionNotSupported Pins TDO and RTCK can only be used as input.
BadArgumentCount Number of arguments is wrong.

Occurs if:
- both mode „PIN_INPUT“ and a level have been
specified,
- a mode other than „PIN_INPUT“, but no value
for „level“ has been specified.

9.3 GPIO_set

GPIO_set <busHandle>, <level>

Sets the GPIO pin to the specified level.

Prerequisites:

- valid busHandle

Parameters:

busHandle

The bus handle returned by GPIO_open.

level

Output level for this pin (0 or 1)

© halec 2025 185

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for level
apiTypeFault Invalid type for one of the parameters.
functionNotSupported This pin is used as input, therefore, this function

cannot be used.

9.4 GPIO_get

value = GPIO_get(<busHandle>)

Read out the specified GPIO pin.

Prerequisites:

- valid busHandle

Note:

This function is only available, if roloFlash does not drive the line itself:

- with mode = PIN_INPUT

- with mode = PIN_ACTIVELOW and level = 1

- with mode = PIN_ACTIVEHIGH and level = 0

Parameters:

busHandle

The bus handle returned by GPIO_open.

Return value:

- Read out pin:
0: Pin is low

© halec 2025 186

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

1: Pin is high

Exceptions:

apiTypeFault Invalid type for busHandle
functionNotSupported The pin cannot be read out, since roloFlash

actively drives it, see above note.

10 Querying roloFlash Properties

Using the following system functions and system constants, you can deter-
mine various pieces of information about your roloFlash.

10.1 Version Numbers etc.

Name Value / Meaning
sys_companyName „halec <https://halec.de>“
sys_deviceName „roloFlash 2“ or „roloFlash 2 AVR“
sys_softwareVersion Version number of firmware
sys_hardwareVersion Version number of hardware
sys_bootloaderVersion Version number of the bootloader
sys_imageVersion roloFlash expects the image generated by the

compiler in this version. Therefore, please use
the compiler matching the roloFlash firmware.

10.2 sys_serialNumber

Name Value / Meaning
sys_serialNumber Exception „functionNotSupported“

In previous roloFlash firmware versions (before v07.AA), this function was
implemented erroneously and did not reliably supply unambiguous results
to be able to distinguish one roloFlash from another.

© halec 2025 187

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

This functionality is now corrected and provided by the new function
sys_uniqueId (see next chapter).

10.3 sys_uniqueId

Name Value / Meaning
sys_uniqueID A string comprising 24 characters, each

character being in the range '0' -'9' or 'A' - 'F'.

The uniqueId is non-ambiguous for each roloFlash specimen. Thusly, you
can create roloBasic scripts that run only on certain specimens of rolo-
Flash.

Example:

1. Determine uniqueId once:

print "uniqueId: ", sys_uniqueId, "\r\n"

Extract from log file:

uniqueId: 1B9FE86E90B7660F08E387B

2. Your script is to run only on this very roloFlash, otherwise it should abort
with an exception:

if sys_uniqueId <> "1B9FE86E90B7660F08E387B"
 print "Wrong roloFlash, abort\r\n"
 throw userException
endif

Note:

For the uniqueId, a unique device ID predefined by the chip manufacturer
is used internally.

© halec 2025 188

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

11 Miscellaneous

11.1 sys_setLogMode

sys_setLogMode <logMode>

Set logging mode (see following chapter, „print“).

Printing will append to the file „LOG.TXT“. If this file does not exist, it will
be created.

Prerequisites:

- none

Parameters:

logMode:

LOGMODE_OFF: print output is suppressed.
LOGMODE_NORMAL: The file is opened and stays opened. Print
output gets buffered and occasionally written to the file. At the end of
the script, the remaining buffered data gets written to the file, and the
file gets closed.
LOGMODE_IMMEDIATE: For each print output, the log file gets ope-
ned, the output gets written to the file, and the file gets closed again.
This ensures that at the time of execution of the next script line, the
previous print output has been stored onto the microSD card.

Return value:

- none (procedure)

Note: The default value for logMode is LOGMODE_NORMAL.

Recommendations:

Use LOGMODE_IMMEDIATE only for troubleshooting. As each print out-
put opens the file anew, writes to it and closes it again, the FAT (file allo-

© halec 2025 189

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

cation table) on the microSD card gets written to each time. This can lead
to higher wear and tear of the microSD card and ultimately make it fail.

If you do not require log output at all, you can change to LOGMODE_OFF
at the beginning of the script. You can also change the logMode at any
point in the script.

If you work with LOGMODE_NORMAL, the log output might be written to
the microSD card only after processing the script has finished. If you light
up the last LED in green in your scripts, preferably do it at the end of the
script, so that the subsequent writing of buffered data to the microSD card
can be concluded within the user‘s reaction time. Probably they will remo-
ve roloFlash afterwards.

If you inform another device (e. g. via UART or GPIO) that roloFlash has
finished its task and this device subsequently turns off power to the target
(and thusly to roloFlash), the script might not have completely finished, so
that log outputs might be missing or the file system might be damaged. In
this case you should set logMode to LOGMODE_IMMEDIATE directly be-
fore informing the device about the finished task.

Exceptions:

apiValueRange Invalid value for logMode.
apiTypeFault Invalid type for logMode.

11.2 print

print <a>, , ...

The parameters a, b etc. get printed. This procedure takes any number
of parameters.

Printing writes to the end of the file „LOG.TXT“. If the file does not exist, it
will be created.

Prerequisites:

- none

Parameters:

© halec 2025 190

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

a, b, ...

Here you can output numbers and arrays. Example:
value = 42
print "The value is: ", value
If a given parameter is neither a number nor a char-array, nothing is
output.

Return value:

- none (procedure)

Note: The output depends on the chosen log mode (see previous chapter,
„Miscellaneous“).

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

11.3 sprint

s = sprint(<a>, , ...)

Returns the specified parameters as strings. The number of parameters is
unlimited. The output is the same as with print, but it is not written into
the file „LOG.TXT“, but is instead the return value of this function.

Prerequisites:

- none

Parameters:

a, b, ...

Numbers and arrays of char. Example:
value = 42

© halec 2025 191

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

s = sprint("The value is: ", value)
If any of the specified parameters is neither number or char array, the
call to sprint will lead to absolutely nothing being returned.

Return value:

- Array of char containing the output

Exceptions:

<none>

11.4 delay

delay <duration>

Waits for the specified time in ms. Only afterwards will this procedure re-
turn.

Prerequisites:

- none

Parameters:

duration

Time to wait in ms.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for duration.
apiTypeFault Invalid type for duration.

© halec 2025 192

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

11.5 sys_getSystemTime

t = sys_getSystemTime

Determines the time lapsed since system start in ms.

Prerequisites:

- none

Parameters:

- none

Return value:

System time in ms.

Exceptions:

- none

11.6 getTargetBoardVoltage

u = getTargetBoardVoltage

Determines voltage provided by target board (in mV).

Prerequisites:

- none

Parameters:

- none

© halec 2025 193

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return value:

Determined voltage in mV.

Exceptions:

- none

11.7 sys_setCpuClock

sys_setCpuClock <frequency>

Changes the internal CPU clock of roloFlash.

• a higher clock needs more energy from the target board

• a lower clock might need longer to process a roloBasic script incl.
flashing.

At start, roloFlash‘s clock is set to 24 MHz, for lower energy consumption.

Attention!

Busses already opened might change their own clock speed in the pro-
cess. You can query the current clock speed.

Recommendation:

If required, change the clock speed at the beginning of your script.

Prerequisites:

- none

Parameters:

frequency

Clock frequency in Hz.
Supported values:

© halec 2025 194

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• CPU_CLOCKMAX: 120000000 (120 MHz)

• CPU_CLOCKMIN: 24000000 (24 MHz)

The clock frequency always gets adjusted to the next smaller clock
speed, but always to at least 24 Mhz.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for frequency.
apiTypeFault Invalid type for frequency.

11.8 sys_getCpuClock

u = sys_getCpuClock

Determine the current clock speed of roloFlash in Hz.

Prerequisites:

- none

Parameters:

- none

Return value:

Read out clock speed in Hz.

Exceptions:

- none

© halec 2025 195

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

11.9 sys_getEraseCounters

eraseCounters = sys_getEraseCounters

Determines how often certain flash sectors of roloFlash have been erased.

Prerequisites:

- none

Parameters:

- none

Return value:

- An array of long with 12 values corresponding to the internal flash sec-
tors of roloFlash. Reasons for erasing flash sectors are:

• For flash data & doublebuffering: If a write request could not be
handled directly anymore and consequently triggered switching buf-
fers.

• For flash data: fd_format, fd_cleanup and fd_getSingleBufferMode

• Firmware updates

Mapping of sectors:

© halec 2025 196

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Sector roloFlash 2
roloFlash 2 AVR

0 Internal

1

2 FlashVars

3

4 Firmware

5

6

7 FlashDisk

8

9

10

11

The manufacturer of the microcontroller used inside roloFlash guarantees
10,000 erase-cycles.

Exceptions:

- none

11.10 setBitBlock

setBitBlock <destArray, sourceArray, position, length>

Copy the number of bits specified by length from the start of sourceAr-
ray to the specified position in destArray.

• destArray and sourceArray must be of same array type (array
of char, array of int or array of long) and will get interpreted as bit
array.

• sourceArray is always read from position 0 onwards.

• Should sourceArray or destArray unable to hold the number of
bits specified by length, correspondingly fewer bits will be copied.

© halec 2025 197

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Prerequisites:

- none

Parameters:

destArray

Array (array of char, array of int or array of long) that data gets co-
pied into at the specified position.

sourceArray

Array (array of char, array of int oder array of long) that data gets co-
pied from, from position 0 onwards.

position

Position in destArray where data will be copied to. The position
must be within destArray.

length

Number of bits to be copied. If necessary, this number will be redu-
ced so that sourceArray can provide the enough bits and dest-
Array can absorb enough bits.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for position or length.
apiTypeFault Invalid type.

11.11 getBitBlock

destArray = getBitBlock(<sourceArray, position,
length>)

© halec 2025 198

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Return an array containing the number of bits from sourceArray speci-
fied by length, and starting at the specified position.

.

• The array returned is of the same type (array of char, array of int or
array of long) as sourceArray.

• The size of the array returned is exactly sufficient to contain the
number of bits specified by length. Unused bits are set to 0.

• Should sourceArray contain fewer bits than requested by
length, correspondingly fewer bits will be copied. This does not
change the size of the array returned.

Prerequisites:

- none

Parameters:

sourceArray

Array (array of char, array of int oder array of long) that data gets co-
pied from, from position 0 onwards.

position

Position in sourceArray from where data gets copied from. The po-
sition must be within sourceArray.

length

Number of bits. If necessary, will be reduced so that sourceArray
can provide enough bits.

Return value:

An array containing the data copied. Its size follows the specified length.
The type is the same as that of sourceArray (array of char, array of int
or array of long).

© halec 2025 199

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

Exceptions:

OutOfMemory Not enough memory to create roloBasic array.
apiValueRange Invalid value for position or length.
apiTypeFault Invalid type.

11.12 chain

chain <fileSystem>, <fileName>, <cryptSpec>

Stops the currently running roloBasic script and starts a different compiled
roloBasic script with the file extension “.BIN“.

Prerequisites:

- none

Parameters:

fileSystem

Specifies on which file system the procedure should be executed.
Possible values are:
SDCARD, FLASHVARS and FLASHDISK
For compatibility reasons, 0 is synonymous for SDCARD.

fileName

The specified file must be a compiled roloBasic file.
For SD cards: the file name must be a valid file name for SD cards,
see „Requirements for file names".
For flash data: the file name must be a valid ID for flash data, see
„Requirements for I".

cryptSpec

Optional parameter for executing an encrypted file.
The parameter padding within the contained dataSpec may contain
the following values:

• 0-15: number of bytes to be ignored after decryption.

© halec 2025 200

Manual

roloFlash 2 VI roloFlash API (List of Procedures and Functions)

• SEC_NOPADDING: after decryption, data will not be trun-
cated. This mode is only applicable and recommend for
SEC_CTR.

• SEC_PKCS7: after decryption, data will be truncated
according to PKCS7 padding. If the data does not conform
to PKCS7, an exception "secPaddingError" will be genera-
ted.

Return value:

- none (procedure)

Note:

To be able to access all resources, like buses and UART etc., in the newly
opened compiled roloBasic script, it is recommended to release all already
occupied resources before executing the chain procedure.

Exceptions:

apiTypeFault Invalid type
dataTypeError Attempted access to data not of type "array of

bytes" (FlashVars or FlashDisk)
<diverse Exceptions des
Dateisystems>

See chapter „File System Exceptions“.

cryptError General error in calculation.
secParamError The specified cryptSpec is erroneous.
secPaddingError PKCS7 is specified, but decrypted data does not

conform to the PKCS7 encoding.

© halec 2025 201

Manual

roloFlash 2 VII Exceptions

VII Exceptions
The roloBasic manual has a detailed description of how exceptions can be
thrown and caught again. If an exception is not caught, it gets displayed
using the LEDs.

If the exception to be displayed is not a number, an exception "exception-
NotANumber" gets shown. Further details can be found in chapter „Excep-
tion has Occurred“. Only exceptions thrown by the user (instead of the
system) can be non-numeric.

There are different kinds of exceptions that all get treated equally:

• roloBasic exceptions

• File system exceptions

• roloFlash exceptions

• Exceptions thrown by the user

1 roloBasic Exceptions

These exceptions occur for errors that are not particularly related to rolo-
Flash, but to the processing of roloBasic. A typical example would be a
valueRange exception.

These exceptions are also listed in the roloBasic manual.

If errors as described for exceptions valueRange, argumentFault and
typeFault occur while calling an API function or procedure, the exceptions
apiValueRange, apiArgumentFault or apiType Fault are created instead.
The respective number of these exceptions is exactly 200 higher than the
appropriate roloBasic exceptions.

© halec 2025 202

Manual

roloFlash 2 VII Exceptions

Name Number Description

outOfMemory 1 Too little free memory present

rootstackOverflow 2 Internal system error

nullpointerAccess 3 Interner system error

valueRange 4 Value range overrun, e g. while assigning values to
arrays.

divisionByZero 5 Division by 0. Can occur with div or mod

argumentFault 6 Invalid number of arguments while calling a
roloBasic function or procedure.

illegalFunction 7 A variable was called like a function or procedure,
but does not contain a valid function or procedure.

indexRange 8 Index range overrun while accessing array.

typeFault 9 A parameter passed has the wrong type.

2 File System Exceptions

These exceptions occur in relation to the file system or the microSD card.

Name Number Description

deviceError 101 Reading from or writing to the microSD card failed.

badCluster 102 Problems within the file system. The file system
should be checked on a PC for consistency.

notMounted 103 Access to the microSD card, although it was not
mounted. This indicates a problem with the
microSD card.

removeError 104 The microSD card has been removed.

createError 105 Creation of file or directory failed.

fileNotOpen 106 The file is not open.

fileNotFound 107 The specified file or directory could not be found.

diskFull 108 The microSD card is full.

truncateError 109 Truncating of a file using fs_truncate failed.

illegalCluster 110 Problems within file system. The file system should
be checked on a PC for consistency.

fileLocked 111 Trying to open an already open file a second time.
Maybe a call to fs_close has been forgotten.

© halec 2025 203

Manual

roloFlash 2 VII Exceptions

outOfFileHandles 112 The number of simultaneously open files is limited
to 3. Tried to open another file.

loaderNotFound 113 The required loader was not found on the microSD
card.

fileIsOpen 114 Attempt to remove or rename a file that is still open
(see fs_remove, fd_remove, fs_rename).

renameError 115 Renaming a file has failed. Maybe a file with the
new name already exists (see fs_rename,
fd_rename).

dataTypeError 116 Attempted access to data not having the expected
data type (see fd_readArrayElem,
fd_readSubArray, fd_getArraySize, fs_fileSize,
fs_open).

3 roloFlash Exceptions

Name Number Description

exceptionIsNotANumber 200 An exception that is not a number has been thrown
and not caught within roloBasic. In this case the
original exception gets discarded and replaced by
this exception.

This can happen only for exceptions thrown by the
user, since all other functions use the numerical
exceptions described here exclusively.
Beispiel: throw "Error"

imageTooLarge 201 The roloBasic script is too big. About 65,000 bytes
can be loaded at most. Please check the size of the
file generated by the roloBasic compiler.

imageWrongVersion 202 The roloBasic compiler utilized does not match the
roloFlash firmware. It is recommended to always
use the latest compiler and the latest firmware.for
roloFlash.

productWrongVersion 203 It has been tried to load an image of a different
product onto roloFlash, e. g. to load an image for
roloFlash 1 onto roloFlash 2.

apiValueRange 204 Value range overrun of a parameter while calling an
API function or proceudre.
Example: ledOn 6, COLOR_GREEN ! There
are only 5 LEDs (Note: the error number is

© halec 2025 204

Manual

roloFlash 2 VII Exceptions

exactly 200 higher than the appropriate roloBasic
exception "valueRange")

imageNotFound 205 The file RUN_V07.BIN could not be found, neither
on the internal flash disk nor on the microSD card (if
inserted).

apiBadArgumentCount 206 Invalid number of arguments while calling an API
function or procedure.
(Note: the error number is exactly 200 higher than
the appropriate roloBasic exception
"badArgumentCount")

apiTypeFault 209 A parameter passed to an API function or
procedure has the wrong type. (Note: the error
number is exactly 200 higher than the appropriate
roloBasic exception "typeFault")

targetWrongMode 210 The procedure or function called requires a
particular mode of the target. For instance, the
procedure setProgrammingSpeed requires the
target to be in ProgramMode.

targetCommunication 211 An error during communication with the target.

targetMemoryLayout 212 The memory layout of the target controller has not
been specified (target_setMemoryMap).

eraseError 213 Erasing of target failed.

targetVerify 214 Data read back differs from comparison data.

targetAlignment 215 Memory alignment of target was not abided to. For
instance, on an STM32H7, data blocks to be written
to flash memory must begin at a 32 byte border in
flash memory.

hexFileSize 230 Implausible size of specified hex file. Maybe the hex
file is defective or empty.

hexFileCRC 231 Checksum error while parsing the hex file. Maybe
the hex file is defective.

hexFileSyntax 232 Syntax error while parsing the hex file. Maybe the
hex file is defective.

srecRecordTypeTooSmall 233 A file format for writing SREC files has been
selected that cannot encode the addresses used.
Please use a file format for larger addresses (S28,
S37) or defer the selection of a suitable file format
to roloFlash (file format SREC).

badLoader 234 The specified loader cannot be used.

invalidHandle 250 The handle used is invalid. The handle has been
closed already, or a wrong parameter has been

© halec 2025 205

Manual

roloFlash 2 VII Exceptions

used instead of a handle.

resourceUnavailable 251 The requested resource is unavailable. This can
happen while opening a bus and another bus that
shares some resources is already open. Most
notably, this exception occurs if the same bus gets
opened twice.

unknownTarget 252 The requested controller cannot be found in the
database (se db_getHandle).

propertyNotFound 253 The required property is not available for the
specified controller (see db_get).

familyNotSupported 254 The specified controller family is not supported (see
getTargetHandle).

functionNotSupported 255 A function or procedure has been called that is not
supported for the current target. E. g. the procedure
target_writeBits is only supported for Atmel
controllers.

valueUnknown 256 Failed trying to read a value that cannot be
determined (see target_getMemoryMap).

valueNotAllowed 257 Failed using an invalid value (see
target_setMemoryMap).

timeoutError 258 The called function or procedure takes too much
time. There may be a problem with the target. If
after such an error work with the current target is to
be continued, it might be necessary to first close the
target handle and re-request another one.

targetError 260 The target reported an error not specified in detail.
For ARM targets, this could be a set sticky bit.

writeProtectError 261 The addressed memory area of the target is write
protected.

readProtectError 262 The addressed memory area of the target is read
protected.

writeError 263 There was an error while writing to the addressed
memory area.

readError 264 There was an error while reading from the
addressed memory area.

targetMissingProperty 265 A value required was not set.

targetResourceAccessConflict 266 An access resulted in a conflict. This can happen
with STM32WB, if the PESD bit in the FLASH_SR
register is set.

fdCRCmissingError 290 An access to an element in flash data requires a

© halec 2025 206

Manual

roloFlash 2 VII Exceptions

CRC, but that element has been created with
crcMode=NOCRC and accessed with
crcMode=USECRC.

fdCRCnotSupported 291 A CRC has been requested for an increment type in
flash data. The increment type does not support
CRC (see fd_write).

fdCRCalreadySetError 292 For flash data, array types can have a CRC. The
CRC is not set at the beginning and can only be set
once. Afterwards, the array cannot be written to.
This exception occurs after using fd_setCrc and
afterwards calling fd_writeArrayElem or
fd_writeSubArray.

fdCRCmismatch 293 Reading from flash data lead to a read CRC
mismatching the CRC calculated for the read data.

fdWriteError 294 A write access to flash data failed. Data under the
current ID or even the whole file system might be
corrupt.

fdCorruptedFile 295 The element in flash-data is corrupt. Maybe even
the whole file system might be corrupt.

fdCorruptedError 296 The complete flash data file system is corrupt.

secParamError 340 sec_encrypt/sec_decrpyt/chain/
target_writeFromFile: specified cryptSpec is
erroneous.

secError 341 Processing error while decrypting, encrypting, or
calculation of a hash value or CRC. Also occurs
when block sizes have not been observed (AES: 16
bytes).

secPaddingError 342 A padding was specified in cryptSpec for decryption
or encryption, and processing the PKCS7 padding
failed.m

4 User Exceptions

• The user can throw exceptions using throw. These can be numeric
and use also use predefined values, e. g.:
throw rangeError

© halec 2025 207

Manual

roloFlash 2 VII Exceptions

• To better differentiate between user-created exceptions and other ex-
ceptions, different exception numbers can be used. For this purpose, the
constant userException with a value of 1000 is availble. The advan-
tage of this value is that is particularly visible in the blink code, if the ex-
ception is not caught. This constant can be used as offset for own ex-
ceptions, e. g:
throw userException + 1

• You can also throw non-numeric exceptions. If such an exception does
not get caught, it gets converted to the exception exceptionIsNotA-
Number at the end of the script and visualized by a blink code: e. g.:
throw "error"

© halec 2025 208

Manual

roloFlash 2 VIII Description of LED Codes

VIII Description of LED Codes

1 Normal Operation

1.1 No microSD card found

LEDs:

1: red
2:
3:
4:
5:

Description:

No microSD card found, or the card is not formatted as FAT32.

Note:

For normal operation, it is required that the microSD card has already
been inserted before plugging roloFlash onto a target board.
Inserting the microSD card after plugging on roloFlash is a case re-
served for updating roloFlash‘s firmware.
If you want to use roloFlash normally, and just forgot to insert the mi-
croSD card beforehand, just remove roloFlash from the target board,
insert the microSD card, and plug on roloFlash again.

1.2 Exception has Occurred

If an exception occurred and it was not caught in the roloBasic script, the
number of the exception gets visualized by an LED blink code.

LEDs:

1: red: comes on and off shortly at beginning of the blink code

© halec 2025 209

Manual

roloFlash 2 VIII Description of LED Codes

2: red: flashing, number corresponds to 1000s of exception
3: red: flashing, number corresponds to 100s of exception
4: red: flashing, number corresponds to 10s of exception
5: red: flashing, number corresponds to 1s of exception

Description:

This code came about by two possible events:
• An appropriate „throw“ command has been executed in the script.

Example:
if getVoltage() > 4000
 throw 1234 !Create exception 1234
endif

• A function or procedure could not fullfil its task and created an ex-
ception.

2 roloFlash Update

Updating the roloFlash firmware is detailed in chapter „Updating rolo-
Flash“.

2.1 Waiting for microSD Card for Udpate

LEDs:

1: red
2:
3:
4:
5:

Description:

If while starting roloFlash no microSD card is inserted, and roloFlash
has not been flashed with a firmware yet, roloFlash waits for the in-
sertion of a microSD card to start the roloFlash firmware update pro-

© halec 2025 210

Manual

roloFlash 2 VIII Description of LED Codes

cess afterwards.

2.2 Update is Running

LEDs:

1: red
2: green \ flashing alternately
3: green /
4:
5:

Description:

The update process is running. It takes about 10-15 seconds. Please
do not abort this process.

2.3 Update Finished Successfully

LEDs:

1: red
 Note: For previous bootloader versions (before v2.0), LED1 was lit
 green.
2: green
3:
4:
5:

Description:

The update has been finished successfully. After removing roloFlash
from the power source, the new firmware will be used for all future
operations.

2.4 Update Failed: File Error

LEDs:

1: red
2: red
3:

© halec 2025 211

Manual

roloFlash 2 VIII Description of LED Codes

4:
5:

Description:

The update failed with a file error. The old firmware might still be
available.

Possible remedy:

• Retry update..

• Update using a different firmware.

2.5 Update Failed: File Not Found

LEDs:

1: red
2:
3: red
4:
5:

Description:

The update could not be started, as no file for the update could be
found. The old firmware is still available.

Possible remedy:

Copy the file for the firmware update to the microSD card, then try
again to update.

Note:

This error pattern is also shown, if the firmware file is corrupt (mis-
matching hash value).

2.6 Update Failed: Multiple Files Found

LEDs:

1: red
2:
3:

© halec 2025 212

Manual

roloFlash 2 VIII Description of LED Codes

4: red
5:

Description:

The update could not be started, as multiple files eligible for an up-
date were found and thusly, it is unclear which file to use. The old
firmware is still availble.

Possible remedy:

Only one update file may be present for an update. Please remove
superfluous files and re-try the update.

2.7 Update Failed: Other Reasons

LEDs:

1: red
2:
3:
4:
5: red

Description:

The update failed. The old firmware might be still available.

Possible remedy:

• Retry update.

• Try update with a different firmware file.

© halec 2025 213

Manual

roloFlash 2 IX Specifications

IX Specifications

1 Supported Controllers from ST Microelectronics

The following controllers are known to the database. The names listed
here can be used with db_getHandle.

1.1 STM32F0

Connection via SWD interface.

STM32F030C6, STM32F030C8, STM32F030CC, STM32F030F4,

STM32F030K6, STM32F030R8, STM32F030RC, STM32F031C4,

STM32F031C6, STM32F031E6, STM32F031F4, STM32F031F6,

STM32F031G4, STM32F031G6, STM32F031K4, STM32F031K6,

STM32F038C6, STM32F038E6, STM32F038F6, STM32F038G6,

STM32F038K6, STM32F042C4, STM32F042C6, STM32F042F4,

STM32F042F6, STM32F042G4, STM32F042G6, STM32F042K4,

STM32F042K6, STM32F042T6, STM32F048C6, STM32F048G6,

STM32F048T6, STM32F051C4, STM32F051C6, STM32F051C8,

STM32F051K4, STM32F051K6, STM32F051K8, STM32F051R4,

STM32F051R6, STM32F051R8, STM32F051T8, STM32F058C8,

STM32F058R8, STM32F058T8, STM32F070C6, STM32F070CB,

STM32F070F6, STM32F070RB, STM32F071C8, STM32F071CB,

STM32F071RB, STM32F071V8, STM32F071VB, STM32F072C8,

STM32F072CB, STM32F072R8, STM32F072RB, STM32F072V8,

STM32F072VB, STM32F078CB, STM32F078RB, STM32F078VB,

STM32F091CB, STM32F091CC, STM32F091RB, STM32F091RC,

STM32F091VB, STM32F091VC, STM32F098CC, STM32F098RC,

© halec 2025 214

Manual

roloFlash 2 IX Specifications

STM32F098VC

1.2 STM32F1

Connection via JTAG or SWD interface.

Supported controllers:

STM32F100C4, STM32F100C6, STM32F100C8, STM32F100CB,

STM32F100R4, STM32F100R6, STM32F100R8, STM32F100RB,

STM32F100RC, STM32F100RD, STM32F100RE, STM32F100V8,

STM32F100VB, STM32F100VC, STM32F100VD, STM32F100VE,

STM32F100ZC, STM32F100ZD, STM32F100ZE, STM32F101C4,

STM32F101C6, STM32F101C8, STM32F101CB, STM32F101R4,

STM32F101R6, STM32F101R8, STM32F101RB, STM32F101RC,

STM32F101RD, STM32F101RE, STM32F101RF, STM32F101RG,

STM32F101T4, STM32F101T6, STM32F101T8, STM32F101TB,

STM32F101V8, STM32F101VB, STM32F101VC, STM32F101VD,

STM32F101VE, STM32F101VF, STM32F101VG, STM32F101ZC,

STM32F101ZD, STM32F101ZE, STM32F101ZF, STM32F101ZG,

STM32F102C4, STM32F102C6, STM32F102C8, STM32F102CB,

STM32F102R4, STM32F102R6, STM32F102R8, STM32F102RB,

STM32F103C4, STM32F103C6, STM32F103C8, STM32F103CB,

STM32F103R4, STM32F103R6, STM32F103R8, STM32F103RB,

STM32F103RC, STM32F103RD, STM32F103RE, STM32F103RF,

STM32F103RG, STM32F103T4, STM32F103T6, STM32F103T8,

STM32F103TB, STM32F103V8, STM32F103VB, STM32F103VC,

STM32F103VD, STM32F103VE, STM32F103VF, STM32F103VG,

STM32F103ZC, STM32F103ZD, STM32F103ZE, STM32F103ZF,

STM32F103ZG, STM32F105R8, STM32F105RB, STM32F105RC,

STM32F105V8, STM32F105VB, STM32F105VC, STM32F107RB,

STM32F107RC, STM32F107VB, STM32F107VC

© halec 2025 215

Manual

roloFlash 2 IX Specifications

1.3 STM32F2

Connection via JTAG or SWD interface.

Supported controllers:

STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF,

STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE,

STM32F205VF, STM32F205VG, STM32F205ZC, STM32F205ZE,

STM32F205ZF, STM32F205ZG, STM32F207IC, STM32F207IE,

STM32F207IF, STM32F207IG, STM32F207VC, STM32F207VE,

STM32F207VF, STM32F207VG, STM32F207ZC, STM32F207ZE,

STM32F207ZF, STM32F207ZG, STM32F215RE, STM32F215RG,

STM32F215VE, STM32F215VG, STM32F215ZE, STM32F215ZG,

STM32F217IE, STM32F217IG, STM32F217VE, STM32F217VG,

STM32F217ZE, STM32F217ZG

1.4 STM32F3

Connection via JTAG or SWD interface.

Supported controllers:

STM32F301C6, STM32F301C8, STM32F301K6, STM32F301K8,

STM32F301R6, STM32F301R8, STM32F302C6, STM32F302C8,

STM32F302CB, STM32F302CC, STM32F302K6, STM32F302K8,

STM32F302R6, STM32F302R8, STM32F302RB, STM32F302RC,

STM32F302RD, STM32F302RE, STM32F302VB, STM32F302VC,

STM32F302VD, STM32F302VE, STM32F302ZD, STM32F302ZE,

STM32F303C6, STM32F303C8, STM32F303CB, STM32F303CC,

STM32F303K6, STM32F303K8, STM32F303R6, STM32F303R8,

STM32F303RB, STM32F303RC, STM32F303RD, STM32F303RE,

STM32F303VB, STM32F303VC, STM32F303VD, STM32F303VE,

STM32F303ZD, STM32F303ZE, STM32F318C8, STM32F318K8,

STM32F328C8, STM32F334C4, STM32F334C6, STM32F334C8,

© halec 2025 216

Manual

roloFlash 2 IX Specifications

STM32F334K4, STM32F334K6, STM32F334K8, STM32F334R6,

STM32F334R8, STM32F358CC, STM32F358RC, STM32F358VC,

STM32F373C8, STM32F373CB, STM32F373CC, STM32F373R8,

STM32F373RB, STM32F373RC, STM32F373V8, STM32F373VB,

STM32F373VC, STM32F378CC, STM32F378RC, STM32F378VC,

STM32F398VE

1.5 STM32F4

Connection via JTAG or SWD interface.

Supported controllers:

STM32F401CB, STM32F401CC, STM32F401CD, STM32F401CE,

STM32F401RB, STM32F401RC, STM32F401RD, STM32F401RE,

STM32F401VB, STM32F401VC, STM32F401VD, STM32F401VE,

STM32F405OE, STM32F405OG, STM32F405RG, STM32F405VG,

STM32F405ZG, STM32F407IE, STM32F407IG, STM32F407VE,

STM32F407VG, STM32F407ZE, STM32F407ZG, STM32F410C8,

STM32F410CB, STM32F410R8, STM32F410RB, STM32F410T8,

STM32F410TB, STM32F411CC, STM32F411CE, STM32F411RC,

STM32F411RE, STM32F411VC, STM32F411VE, STM32F412CE,

STM32F412CG, STM32F412RE, STM32F412RG, STM32F412VE,

STM32F412VG, STM32F412ZE, STM32F412ZG, STM32F413CG,

STM32F413CH, STM32F413MG, STM32F413MH, STM32F413RG,

STM32F413RH, STM32F413VG, STM32F413VH, STM32F413ZG,

STM32F413ZH, STM32F415OG, STM32F415RG, STM32F415VG,

STM32F415ZG, STM32F417IE, STM32F417IG, STM32F417VE,

STM32F417VG, STM32F417ZE, STM32F417ZG, STM32F423CH,

STM32F423MH, STM32F423RH, STM32F423VH, STM32F423ZH,

STM32F427AG, STM32F427AI, STM32F427IG, STM32F427II,

STM32F427VG, STM32F427VI, STM32F427ZG, STM32F427ZI,

STM32F429AG, STM32F429AI, STM32F429BE, STM32F429BG,

© halec 2025 217

Manual

roloFlash 2 IX Specifications

STM32F429BI, STM32F429IE, STM32F429IG, STM32F429II,

STM32F429NE, STM32F429NG, STM32F429NI, STM32F429VE,

STM32F429VG, STM32F429VI, STM32F429ZE, STM32F429ZG,

STM32F429ZI, STM32F437AI, STM32F437IG, STM32F437II,

STM32F437VG, STM32F437VI, STM32F437ZG, STM32F437ZI,

STM32F439AI, STM32F439BG, STM32F439BI, STM32F439IG,

STM32F439II, STM32F439NG, STM32F439NI, STM32F439VG,

STM32F439VI, STM32F439ZG, STM32F439ZI, STM32F446MC,

STM32F446ME, STM32F446RC, STM32F446RE, STM32F446VC,

STM32F446VE, STM32F446ZC, STM32F446ZE, STM32F469AE,

STM32F469AG, STM32F469AI, STM32F469BE, STM32F469BG,

STM32F469BI, STM32F469IE, STM32F469IG, STM32F469II,

STM32F469NE, STM32F469NG, STM32F469NI, STM32F469VE,

STM32F469VG, STM32F469VI, STM32F469ZE, STM32F469ZG,

STM32F469ZI, STM32F479AG, STM32F479AI, STM32F479BG,

STM32F479BI, STM32F479IG, STM32F479II, STM32F479NG,

STM32F479NI, STM32F479VG, STM32F479VI, STM32F479ZG,

STM32F479ZI

1.6 STM32F7

Connection via JTAG or SWD interface.

Supported controllers:

STM32F722IC, STM32F722IE, STM32F722RC, STM32F722RE,

STM32F722VC, STM32F722VE, STM32F722ZC, STM32F722ZE,

STM32F723IC, STM32F723IE, STM32F723VE, STM32F723ZC,

STM32F723ZE, STM32F732IE, STM32F732RE, STM32F732VE,

STM32F732ZE, STM32F733IE, STM32F733VE, STM32F733ZE,

STM32F745IE, STM32F745IG, STM32F745VE, STM32F745VG,

STM32F745ZE, STM32F745ZG, STM32F746BE, STM32F746BG,

STM32F746IE, STM32F746IG, STM32F746NE, STM32F746NG,

© halec 2025 218

Manual

roloFlash 2 IX Specifications

STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG,

STM32F756BG, STM32F756IG, STM32F756NG, STM32F756VG,

STM32F756ZG, STM32F765BG, STM32F765BI, STM32F765IG,

STM32F765II, STM32F765NG, STM32F765NI, STM32F765VG,

STM32F765VI, STM32F765ZG, STM32F765ZI, STM32F767BG,

STM32F767BI, STM32F767IG, STM32F767II, STM32F767NG,

STM32F767NI, STM32F767VG, STM32F767VI, STM32F767ZG,

STM32F767ZI, STM32F769AI, STM32F769BG, STM32F769BI,

STM32F769IG, STM32F769II, STM32F769NG, STM32F769NI,

STM32F777BI, STM32F777II, STM32F777NI, STM32F777VI,

STM32F777ZI, STM32F778AI, STM32F779AI, STM32F779BI,

STM32F779II, STM32F779NI,

1.7 STM32H7

Connection via JTAG or SWD interface.

Supported controllers:

STM32H743AI, STM32H743BI, STM32H743II, STM32H743VI,

STM32H743XI, STM32H743ZI, STM32H753AI, STM32H753BI,

STM32H753II, STM32H753VI, STM32H753XI, STM32H753ZI,

1.8 STM32L0

Connection via SWD interface.

Supported controllers:

STM32L010C6, STM32L010F4, STM32L010K4, STM32L010K8,

STM32L010R8, STM32L010RB, STM32L011D3, STM32L011D4,

STM32L011E3, STM32L011E4, STM32L011F3, STM32L011F4,

STM32L011G3, STM32L011G4, STM32L011K3, STM32L011K4,

STM32L021D4, STM32L021F4, STM32L021G4, STM32L021K4,

STM32L031C4, STM32L031C6, STM32L031E4, STM32L031E6,

© halec 2025 219

Manual

roloFlash 2 IX Specifications

STM32L031F4, STM32L031F6, STM32L031G4, STM32L031G6,

STM32L031K4, STM32L031K6, STM32L041C6, STM32L041E6,

STM32L041F6, STM32L041G6, STM32L041K6, STM32L051C6,

STM32L051C8, STM32L051K6, STM32L051K8, STM32L051R6,

STM32L051R8, STM32L051T6, STM32L051T8, STM32L052C6,

STM32L052C8, STM32L052K6, STM32L052K8, STM32L052R6,

STM32L052R8, STM32L052T6, STM32L052T8, STM32L053C6,

STM32L053C8, STM32L053R6, STM32L053R8, STM32L062K8,

STM32L063C8, STM32L063R8, STM32L071C8, STM32L071CB,

STM32L071CZ, STM32L071K8, STM32L071KB, STM32L071KZ,

STM32L071RB, STM32L071RZ, STM32L071V8, STM32L071VB,

STM32L071VZ, STM32L072CB, STM32L072CZ, STM32L072KB,

STM32L072KZ, STM32L072RB, STM32L072RZ, STM32L072V8,

STM32L072VB, STM32L072VZ, STM32L073CB, STM32L073CZ,

STM32L073RB, STM32L073RZ, STM32L073V8, STM32L073VB,

STM32L073VZ, STM32L081CB, STM32L081CZ, STM32L081KZ,

STM32L082CZ, STM32L082KB, STM32L082KZ, STM32L083CB,

STM32L083CZ, STM32L083RB, STM32L083RZ, STM32L083V8,

STM32L083VB, STM32L083VZ

1.9 STM32L1

Connection via JTAG or SWD interface.

Supported controllers:

STM32L100C6, STM32L100C6-A, STM32L100R8,

STM32L100R8-A, STM32L100RB, STM32L100RB-A,

STM32L100RC, STM32L151C6, STM32L151C6-A,

STM32L151C8, STM32L151C8-A, STM32L151CB,

STM32L151CB-A, STM32L151CC, STM32L151QC,

STM32L151QD, STM32L151QE, STM32L151R6,

© halec 2025 220

Manual

roloFlash 2 IX Specifications

STM32L151R6-A, STM32L151R8, STM32L151R8-A,

STM32L151RB, STM32L151RB-A, STM32L151RC,

STM32L151RC-A, STM32L151RD, STM32L151RE,

STM32L151UC, STM32L151V8, STM32L151V8-A,

STM32L151VB, STM32L151VB-A, STM32L151VC,

STM32L151VC-A, STM32L151VD, STM32L151VD-X,

STM32L151VE, STM32L151ZC, STM32L151ZD,

STM32L151ZE, STM32L152C6, STM32L152C6-A,

STM32L152C8, STM32L152C8-A, STM32L152CB,

STM32L152CB-A, STM32L152CC, STM32L152QC,

STM32L152QD, STM32L152QE, STM32L152R6,

STM32L152R6-A, STM32L152R8, STM32L152R8-A,

STM32L152RB, STM32L152RB-A, STM32L152RC,

STM32L152RC-A, STM32L152RD, STM32L152RE,

STM32L152UC, STM32L152V8, STM32L152V8-A,

STM32L152VB, STM32L152VB-A, STM32L152VC,

STM32L152VC-A, STM32L152VD, STM32L152VD-X,

STM32L152VE, STM32L152ZC, STM32L152ZD,

STM32L152ZE, STM32L162QD, STM32L162RC,

STM32L162RC-A, STM32L162RD, STM32L162RE,

STM32L162VC, STM32L162VC-A, STM32L162VD,

STM32L162VD-X, STM32L162VE, STM32L162ZD,

STM32L162ZE

1.10 STM32L4

Connection via JTAG or SWD interface.

Supported controllers:

STM32L431CB, STM32L431CC, STM32L431KB, STM32L431KC,

STM32L431RB, STM32L431RC, STM32L431VC, STM32L432KB,

© halec 2025 221

Manual

roloFlash 2 IX Specifications

STM32L432KC, STM32L433CB, STM32L433CC, STM32L433RB,

STM32L433RC, STM32L433VC, STM32L442KC, STM32L443CC,

STM32L443RC, STM32L443VC, STM32L451CC, STM32L451CE,

STM32L451RC, STM32L451RE, STM32L451VC, STM32L451VE,

STM32L452CC, STM32L452CE, STM32L452RC, STM32L452RE,

STM32L452VC, STM32L452VE, STM32L462CE, STM32L462RE,

STM32L462VE, STM32L471QE, STM32L471QG, STM32L471RE,

STM32L471RG, STM32L471VE, STM32L471VG, STM32L471ZE,

STM32L471ZG, STM32L475RC, STM32L475RE, STM32L475RG,

STM32L475VC, STM32L475VE, STM32L475VG, STM32L476JE,

STM32L476JG, STM32L476ME, STM32L476MG, STM32L476QE,

STM32L476QG, STM32L476RC, STM32L476RE, STM32L476RG,

STM32L476VC, STM32L476VE, STM32L476VG, STM32L476ZE,

STM32L476ZG, STM32L486JG, STM32L486QG, STM32L486RG,

STM32L486VG, STM32L486ZG, STM32L496AE, STM32L496AG,

STM32L496QE, STM32L496QG, STM32L496RE, STM32L496RG,

STM32L496VE, STM32L496VG, STM32L496ZE, STM32L496ZG,

STM32L4A6AG, STM32L4A6QG, STM32L4A6RG, STM32L4A6VG,

STM32L4A6ZG

1.11 STM32L4+

Connection via JTAG or SWD interface.

Supported controllers:

STM32L4R5AG, STM32L4R5AI, STM32L4R5QG, STM32L4R5QI,

STM32L4R5VG, STM32L4R5VI, STM32L4R5ZG, STM32L4R5ZI,

STM32L4R7AI, STM32L4R7VI, STM32L4R7ZI, STM32L4R9AG,

STM32L4R9AI, STM32L4R9VG, STM32L4R9VI, STM32L4R9ZG,

STM32L4R9ZI, STM32L4S5AI, STM32L4S5QI, STM32L4S5VI,

STM32L4S5ZI, STM32L4S7AI, STM32L4S7VI, STM32L4S7ZI,

© halec 2025 222

Manual

roloFlash 2 IX Specifications

STM32L4S9AI, STM32L4S9VI, STM32L4S9ZI

1.12 STM32G0

Connection via SWD interface.

Supported controllers:

STM32G030C6, STM32G030C8, STM32G030F6, STM32G030J6,

STM32G030K6, STM32G030K8, STM32G031C6, STM32G031C8,

STM32G031F6, STM32G031F8, STM32G031G6, STM32G031G8,

STM32G031J6, STM32G031K6, STM32G031K8, STM32G041C8,

STM32G070CB, STM32G070KB, STM32G070RB, STM32G071C8,

STM32G071CB, STM32G071EB, STM32G071G8, STM32G071GB,

STM32G071K8, STM32G071KB, STM32G071R8, STM32G071RB,

STM32G081CB, STM32G081EB, STM32G081GB, STM32G081KB,

STM32G081RB

1.13 STM32WB

Connection via JTAG or SWD interface.

Supported controllers:

STM32WB55CC, STM32WB55CE, STM32WB55CG, STM32WB55RC,

STM32WB55RE, STM32WB55RG, STM32WB55VC, STM32WB55VE,

STM32WB55VG

2 Supported Controllers from Atmel

The following controllers are known to the database. The names listed
here can be used with db_getHandle.

© halec 2025 223

Manual

roloFlash 2 IX Specifications

2.1 AVR (ISP Interface)

Connection via ISP interface.

Supported Controllers:

AT90CAN128, AT90CAN32, AT90CAN64,

AT90PWM1, AT90PWM2, AT90PWM216,

AT90PWM2B, AT90PWM3, AT90PWM316,

AT90PWM3B, AT90PWM81, AT90S1200,

AT90S2313, AT90S2323, AT90S2343,

AT90S4414, AT90S4433, AT90S4434,

AT90S8515, AT90S8535, AT90SCR100H,

AT90USB1286, AT90USB1287, AT90USB162,

AT90USB646, AT90USB647, AT90USB82,

ATmega103, ATmega128, ATmega1280,

ATmega1281, ATmega1284, ATmega1284P,

ATmega1284RFR2, ATmega128A, ATmega128RFA1,

ATmega128RFR2, ATmega16, ATmega161,

ATmega162, ATmega163, ATmega164A,

ATmega164P, ATmega164PA, ATmega165,

ATmega165A, ATmega165P, ATmega165PA,

ATmega168, ATmega168A, ATmega168P,

ATmega168PA, ATmega168PB, ATmega169,

ATmega169A, ATmega169P, ATmega169PA,

ATmega16A, ATmega16HVA, ATmega16HVA2,

ATmega16HVB, ATmega16HVBrevB, ATmega16M1,

ATmega16U2, ATmega16U4, ATmega2560,

ATmega2561, ATmega2564RFR2, ATmega256RFR2,

ATmega32, ATmega323, ATmega324A,

ATmega324P, ATmega324PA, ATmega324PB,

ATmega325, ATmega3250, ATmega3250A,

© halec 2025 224

Manual

roloFlash 2 IX Specifications

ATmega3250P, ATmega3250PA, ATmega325A,

ATmega325P, ATmega325PA, ATmega328,

ATmega328P, ATmega328PB, ATmega329,

ATmega3290, ATmega3290A, ATmega3290P,

ATmega3290PA, ATmega329A, ATmega329P,

ATmega329PA, ATmega32A, ATmega32C1,

ATmega32HVB, ATmega32HVBrevB, ATmega32M1,

ATmega32U2, ATmega32U4, ATmega32U6,

ATmega48, ATmega48A, ATmega48P,

ATmega48PA, ATmega48PB, ATmega64,

ATmega640, ATmega644, ATmega644A,

ATmega644P, ATmega644PA, ATmega644RFR2,

ATmega645, ATmega6450, ATmega6450A,

ATmega6450P, ATmega645A, ATmega645P,

ATmega649, ATmega6490, ATmega6490A,

ATmega6490P, ATmega649A, ATmega649P,

ATmega64A, ATmega64C1, ATmega64HVE,

ATmega64HVE2, ATmega64M1, ATmega64RFR2,

ATmega8, ATmega8515, ATmega8535,

ATmega88, ATmega88A, ATmega88P,

ATmega88PA, ATmega88PB, ATmega8A,

ATmega8HVA, ATmega8U2, ATtiny12,

ATtiny13, ATtiny13A, ATtiny15,

ATtiny1634, ATtiny167, ATtiny22,

ATtiny2313, ATtiny2313A, ATtiny24,

ATtiny24A, ATtiny25, ATtiny26,

ATtiny261, ATtiny261A, ATtiny4313,

ATtiny43U, ATtiny44, ATtiny441,

ATtiny44A, ATtiny45, ATtiny461,

ATtiny461A, ATtiny48, ATtiny80,

© halec 2025 225

Manual

roloFlash 2 IX Specifications

ATtiny828, ATtiny84, ATtiny840,

ATtiny841, ATtiny84A, ATtiny85,

ATtiny861, ATtiny861A, ATtiny87,

ATtiny88

2.2 AVR (TPI Interface)

Connection via TPI interface.

Supported Controllers:

ATtiny10, ATtiny102, ATtiny104,

ATtiny20, ATtiny4, ATtiny40,

ATtiny5, ATtiny9

2.3 AVR (PDI Interface)

Connection via PDI interface.

Supported Controllers:

ATxmega128A1, ATxmega128A1U, ATxmega128A3,

ATxmega128A3U, ATxmega128A4U, ATxmega128B1,

ATxmega128B3, ATxmega128C3, ATxmega128D3,

ATxmega128D4, ATxmega16A4, ATxmega16A4U,

ATxmega16C4, ATxmega16D4, ATxmega16E5,

ATxmega192A3, ATxmega192A3U, ATxmega192C3,

ATxmega192D3, ATxmega256A3, ATxmega256A3B,

ATxmega256A3BU, ATxmega256A3U, ATxmega256C3,

ATxmega256D3, ATxmega32A4, ATxmega32A4U,

ATxmega32C3, ATxmega32C4, ATxmega32D3,

ATxmega32D4, ATxmega32E5, ATxmega384C3,

ATxmega384D3, ATxmega64A1, ATxmega64A1U,

ATxmega64A3, ATxmega64A3U, ATxmega64A4U,

ATxmega64B1, ATxmega64B3, ATxmega64C3,

ATxmega64D3, ATxmega64D4, ATxmega8E5

© halec 2025 226

Manual

roloFlash 2 IX Specifications

2.4 AVR (UPDI Interface)

Connection via UPDI interface.

Supported Controllers:

ATmega3208, ATmega3209, ATmega4808,

ATmega4809, ATtiny1604, ATtiny1606,

ATtiny1607, ATtiny1614, ATtiny1616,

ATtiny1617, ATtiny202, ATtiny204,

ATtiny212, ATtiny214, ATtiny3214,

ATtiny3216, ATtiny3217, ATtiny402,

ATtiny404, ATtiny406, ATtiny412,

ATtiny414, ATtiny416, ATtiny417,

ATtiny804, ATtiny806, ATtiny807,

ATtiny814, ATtiny816, ATtiny817

2.5 AVR32 (aWire Interface)

Connection via aWire interface.

Supported Controllers:

AT32UC3C0128C, AT32UC3C0256C, AT32UC3C0512C,

AT32UC3C064C, AT32UC3C1128C, AT32UC3C1256C,

AT32UC3C1512C, AT32UC3C164C, AT32UC3C2128C,

AT32UC3C2256C, AT32UC3C2512C, AT32UC3C264C,

ATUC128D3, ATUC128D4, ATUC64D3,

ATUC64D4, AT32UC3L0128, AT32UC3L016,

AT32UC3L0256, AT32UC3L032, AT32UC3L064

© halec 2025 227

Manual

roloFlash 2 IX Specifications

3 Technical Data

• Supported controllers of STM32 series via JTAG or SWD interface:
• STM32F0: alle Derivate (SWD-Interface only)
• STM32F1: alle Derivate
• STM32F2: alle Derivate
• STM32F3: alle Derivate
• STM32F4: alle Derivate
• STM32F7: alle Derivate
• STM32H7: alle Derivate
• STM32L0: alle Derivate (SWD-Interface only)
• STM32L1: alle Derivate
• STM32L4: alle Derivate
• STM32L4+: alle Derivate
• STM32G0: alle Derivate (SWD-Interface only)
• STM32WB: alle Derivate

• Supported controllers of Atmel AVR series with ISP interface:
• AT90
• ATtiny
• ATmega

• Supported controllers of Atmel AVR series with TPI interface:
• all derivatives

• Supported controllers of Atmel AVR XMega series with PDI inter-
face:

• all derivatives
• Supported controllers of Atmel AVR series with UPDI interface:

• all derivatives
• Supported controllers of Atmel AVR32 series with aWire interface:

• all derivatives
• Flash programming of the target microcontroller via 10-pin, 2-row

female connector and appropriate adapters for JTAG / SWD / ISP /
TPI / PDI / UPDI / aWire. Adapters sold separately.

• JTAG: JTAG-chain support with up to 10 devices
• Power supply via the microcontroller to be programmed (2.0 -

5.5 volts).
• Writing of and reading from:

• Flash
• EEPROM (Atmel)
• RAM (STM32 only)
• Fuse-bits (Atmel)
• Lock-bits (Atmel)

© halec 2025 228

Manual

roloFlash 2 IX Specifications

• Supported file system on microSD card: FAT32
• Internal flash disk with 640 kBytes and internal flash vars with 16

kBytes
• Supported file formats:

• Intel HEX („.HEX“) (I8HEX, I16HEX, I32HEX) (ASCII file)
• Motorola SREC (S19, S28, S37) (ASCII file)
• RAW (binary file with raw data and no explicit address)

• Supported memory card formats: microSD, microSDHC

• Physical dimensions (without Universal Connector): height 46 mm,
width 22 mm, depth 10 mm

© halec 2025 229

	I Preface
	II Scope of Delivery
	III Description
	1 Universal Connector (Programming Connector)
	1.1 Pin Assignments (Overview)
	1.2 Pinout JTAG Interface
	1.3 Pinout SWD Interface
	1.4 Pinout Atmel ISP Interface
	1.5 Pinout Atmel TPI Interface
	1.6 Pinout Atmel PDI Interface
	1.7 Pinout Atmel UPDI / aWire Interface
	1.8 Pinout UART 0 Interface
	1.9 Pinout UART 1 Interface
	1.10 Pinout GPIO Interface

	2 Pull-Up- / Pull-Down Resistors
	3 Voltage Range
	4 Electrical Protection Measures
	5 LEDs
	6 microSD Card Slot
	7 Typical Usage
	7.1 Preparation of the microSD card on a PC
	7.2 Flashing of the Target Boards

	IV Updating roloFlash
	1 Updating the Bootloader
	2 Updating roloFlash Firmware

	V List of Supplied roloBasic Scripts
	1 Hello world
	2 Versions
	3 Erase-and-Flash
	4 Read

	VI roloFlash API (List of Procedures and Functions)
	1 Internal Database
	1.1 db_getHandle
	1.2 db_get

	2 Busses
	2.1 bus_open
	2.2 bus_close
	2.3 bus_setSpeed
	2.4 bus_getSpeed
	2.5 JTAG and SWD Bus
	2.5.1 JTAG Chain
	2.5.2 bus_open(JTAG/SWD, …) and available speeds
	2.5.3 bus_enforceJTAG
	2.5.4 bus_enforceSWD
	2.5.5 bus_scan
	2.5.6 bus_configure
	2.5.7 bus_transceive
	2.5.8 bus_write
	2.5.9 bus_read

	2.6 Atmel ISP Bus
	2.6.1 bus_open(ISP, …) and Available Speeds
	2.6.2 Configure Reset Mode

	2.7 Atmel TPI Bus
	2.7.1 bus_open(TPI, …) and Available Speeds
	2.7.2 Configure Reset Mode

	2.8 Atmel PDI-Bus
	2.8.1 bus_open(PDI, …) and Available Speeds

	2.9 Atmel UPDI / aWire Bus
	2.9.1 bus_open(UPDI / AWIRE, …) and Available Speeds

	2.10 UART
	2.10.1 bus_open(UART, …) and Available Speeds
	2.10.2 bus_write
	2.10.3 bus_read

	3 Target in General
	3.1 target_open
	3.2 target_close
	3.3 target_getPresent
	3.4 target_setMode
	3.5 target_restart
	3.6 Read/Write Target Memory Map
	3.6.1 target_setMemoryMap
	3.6.2 target_getMemoryMap
	3.6.3 target_clearMemoryLayout

	3.7 Loader
	3.8 Erase, Write, Read and Verify Target
	3.8.1 target_eraseFlash
	3.8.2 target_writeFromFile
	3.8.3 target_readToFile
	3.8.4 target_write
	3.8.5 target_read

	3.9 Target STM32
	3.9.1 target_setVoltageForParallelism
	3.9.2 target_setParallelism
	3.9.3 target_getParallelism
	3.9.4 target_setLoaderPreference
	3.9.5 target_getLoaderUsage

	3.10 Target Atmel AVR (ISP Interface)
	3.10.1 target_getDeviceId
	3.10.2 target_readBits
	3.10.3 target_writeBits
	3.10.4 target_setExtendedAddressMode

	3.11 Atmel TPI (TPI Interface)
	3.11.1 target_getDeviceId
	3.11.2 target_readBits
	3.11.3 target_writeBits

	3.12 Target Atmel PDI (PDI Interface)
	3.12.1 target_getDeviceId
	3.12.2 target_readBits
	3.12.3 target_writeBits

	3.13 Target Atmel UPDI (UPDI-Interface)
	3.13.1 target_getDeviceId
	3.13.2 target_readBits
	3.13.3 target_writeBits

	3.14 Target Atmel AVR32 (aWire-Interface)
	3.14.1 target_getDeviceId

	4 Flash-Data
	4.1 fd_write
	4.2 fd_createArray
	4.3 fd_writeArrayElem
	4.4 fd_writeSubArray
	4.5 fd_read
	4.6 fd_readArrayElem
	4.7 fd_readSubArray
	4.8 fd_remove
	4.9 fd_getItemCount
	4.10 fd_getId
	4.11 fd_idExists
	4.12 fd_isArray
	4.13 fd_getArraySize
	4.14 fd_getType
	4.15 fd_getCountingBytes
	4.16 fd_setCrc
	4.17 fd_getCrc
	4.18 fd_calcCrc
	4.19 fd_hasCrc
	4.20 fd_getFreeMem
	4.21 fd_getBytesWritten
	4.22 fd_setSingleBufferMode
	4.23 fd_getSingleBufferMode
	4.24 fd_cleanup
	4.25 fd_format

	5 Files
	5.1 fs_mediaExists
	5.2 fs_create
	5.3 fs_rename
	5.4 fs_remove
	5.5 fs_mkDir
	5.6 fs_fileExists
	5.7 fs_filesize
	5.8 fs_open
	5.9 fs_read
	5.10 fs_write
	5.11 fs_truncate
	5.12 fs_close
	5.13 fs_sync

	6 LEDs
	6.1 led_on
	6.2 led_off
	6.3 led_blink
	6.4 led_runningLight
	6.5 led_runningLightOutstanding

	7 SecureApi
	7.1 sec_crc
	7.2 sec_hash
	7.3 sec_encrypt
	7.4 sec_decrypt

	9 GPIO Interface
	9.1 GPIO_open
	9.2 GPIO_setMode
	9.3 GPIO_set
	9.4 GPIO_get

	10 Querying roloFlash Properties
	10.1 Version Numbers etc.
	10.2 sys_serialNumber
	10.3 sys_uniqueId

	11 Miscellaneous
	11.1 sys_setLogMode
	11.2 print
	11.3 sprint
	11.4 delay
	11.5 sys_getSystemTime
	11.6 getTargetBoardVoltage
	11.7 sys_setCpuClock
	11.8 sys_getCpuClock
	11.9 sys_getEraseCounters
	11.10 setBitBlock
	11.11 getBitBlock
	11.12 chain

	VII Exceptions
	1 roloBasic Exceptions
	2 File System Exceptions
	3 roloFlash Exceptions
	4 User Exceptions

	VIII Description of LED Codes
	1 Normal Operation
	1.1 No microSD card found
	1.2 Exception has Occurred

	2 roloFlash Update
	2.1 Waiting for microSD Card for Udpate
	2.2 Update is Running
	2.3 Update Finished Successfully
	2.4 Update Failed: File Error
	2.5 Update Failed: File Not Found
	2.6 Update Failed: Multiple Files Found
	2.7 Update Failed: Other Reasons

	IX Specifications
	1 Supported Controllers from ST Microelectronics
	1.1 STM32F0
	1.2 STM32F1
	1.3 STM32F2
	1.4 STM32F3
	1.5 STM32F4
	1.6 STM32F7
	1.7 STM32H7
	1.8 STM32L0
	1.9 STM32L1
	1.10 STM32L4
	1.11 STM32L4+
	1.12 STM32G0
	1.13 STM32WB

	2 Supported Controllers from Atmel
	2.1 AVR (ISP Interface)
	2.2 AVR (TPI Interface)
	2.3 AVR (PDI Interface)
	2.4 AVR (UPDI Interface)
	2.5 AVR32 (aWire Interface)

	3 Technical Data

