
Manual

roloFlash 2 AVR

Document version 1.5.41 as of 2019-10-01
(Software version: 05.AB)

Copyright © 2009-2019 halec. Alle brand names, trademarks, logos and pictures are the property of their
respective owners. This document is subject to errors and changes without notice.

i

halec
Herrnröther Str. 54

63303 Dreieich
Germany

www.halec.de

http://www.halec.de/

Table Of Contents

I Preface..1
II Scope of Delivery...3
III Description..4

1 Programming Connector..4
1.1 Pin Assignments (Overview)..4
1.2 Pinout Atmel ISP Interface..5
1.3 Pinout Atmel TPI Interface..5
1.4 Pinout Atmel PDI Interface...6
1.5 Pinout Atmel UPDI Interface...6

2 Pull-Up- / Pull-Down Resistors..7
3 Voltage Range...7
4 Electrical Protection Measures..7
5 LEDs..8
6 microSD Card Slot...8
7 Typical Usage...8

7.1 Preparation of the microSD card on a PC..9
7.2 Flashing of the Target Boards...10

IV Updating roloFlash..11
V List of Supplied roloBasic Scripts..14

1 Hello world...14
2 Versions...14
3 Erase-and-Flash..15
4 Read...16

VI roloFlash API (List of Procedures and Functions)..19

1 Internal Database...20
1.1 DB_getHandle..20
1.2 DB_get..21

2 Busses...22
2.1 bus_open..22
2.2 bus_close..24
2.3 bus_setSpeed...24
2.4 bus_getSpeed..26
2.5 Atmel ISP Bus...26

2.5.1 bus_open(ISP, …) and Available Speeds....................................26
2.5.2 Configure Reset Mode...29

2.6 Atmel TPI Bus...31
2.6.1 bus_open(TPI, …) and Available Speeds....................................31
2.6.2 Configure Reset Mode...34

2.7 Atmel PDI-Bus..35
2.7.1 bus_open(PDI, …) and Available Speeds...................................35

2.8 Atmel UPDI Bus..37
2.8.1 bus_open(UPDI, …) and Available Speeds.................................37

ii

3 Target in General...40
3.1 target_open...40
3.2 target_close..41
3.3 target_getPresent...42
3.4 target_setMode...44
3.5 target_restart..46
3.6 Read/Write Target Memory Map...49

3.6.1 target_setMemoryMap...49
3.6.2 target_getMemoryMap...50
3.6.3 target_clearMemoryLayout..51

3.7 Erase, Write, Read and Verify Target...52
3.7.1 target_eraseFlash..52
3.7.2 target_writeFromFile..53
3.7.3 target_readToFile...55
3.7.4 target_write..57
3.7.5 target_read...58

3.8 Target Atmel AVR (ISP Interface)...60
3.8.1 target_getDeviceId...60
3.8.2 target_readBits...61
3.8.3 target_writeBits..62
3.8.4 target_setExtendedAddressMode...63

3.9 Atmel TPI (TPI Interface)..64
3.9.1 target_getDeviceId...64
3.9.2 target_readBits...65
3.9.3 target_writeBits..66

3.10 Target Atmel PDI (PDI Interface)..67
3.10.1 target_getDeviceId...68
3.10.2 target_readBits...68
3.10.3 target_writeBits..69

3.11 Target Atmel UPDI (UPDI-Interface)...71
3.11.1 target_getDeviceId...71
3.11.2 target_readBits...72
3.11.3 target_writeBits..73

4 Files..75
4.1 fs_create...75
4.2 fs_remove...76
4.3 fs_mkDir..77
4.4 fs_fileExists...77
4.5 fs_filesize..78
4.6 fs_open...79
4.7 fs_read..80
4.8 fs_write...81
4.9 fs_truncate..82
4.10 fs_close...82
4.11 fs_sync..83

5 LEDs..84
5.1 led_on...84

iii

5.2 led_off...85
5.3 led_blink..86
5.4 led_runningLight...86
5.5 led_runningLightOutstanding...87

6 Querying roloFlash Properties...88
6.1 Version Numbers etc. ..88
6.2 sys_serialNumber...89

7 Miscellaneous..90
7.1 sys_setLogMode..90
7.2 print...91
7.3 delay...92
7.4 sys_getSystemTime...93
7.5 getTargetBoardVoltage...93
7.6 sys_setCpuClock..94
7.7 sys_getCpuClock..95

VII Exceptions...97

1 roloBasic Exceptions..97
2 File System Exceptions...98
3 User Exceptions...99
4 roloFlash Exceptions..99

VIII Description of LED Codes..102

1 Normal Operation...102
1.1 No microSD card found..102
1.2 Exception has Occurred...102

2 roloFlash Update..103
2.1 Waiting for microSD Card for Udpate...103
2.2 Update is Running..103
2.3 Update Finished Successfully..104
2.4 Update Failed: File Error..104
2.5 Update Failed: File Not Found...105
2.6 Update Failed: Multiple Files Found...105
2.7 Update Failed: Other Reasons...105

IX Specifications..107

1 Supported Controllers from Atmel...107
1.1 AVR (ISP Interface)...107
1.2 AVR (TPI Interface)...109
1.3 AVR (PDI Interface)..109
1.4 AVR (UPDI Interface)..110

2 Technical Data..110

iv

roloFlash 2 AVR I Preface

I Preface
• roloFlash allows for mobile and PC-independent flashing of your

products which can be based on various microcontrollers. Under certain
conditions, multiple microcontrollers can be flashed in your product. A
list of currently supported microcontrollers is available in chapter
„Specifications“.

• Since roloFlash is free of operator controls, and thusly avoids operating
errors, your products can be flashed by untrained personnel or
customers.

• Neither PC nor microcontroller-specific tool-chains are necessary.

• Use roloFlash in field, at your customers' sites and in large- and small-
batch production.

• Gain more freedom by employing a uniform process for all supported
microcontroller families*.

Term „Atmel“

Although microcontroller manufacturer Atmel has been acquired by
Microchip, the name „Atmel“ continues to be used in our documentation
and software, to avoid confusion with other controllers by Microchip (e.g.
the PIC-family).

Term „Target board“

The term "target board" is used to mean your products to be flashed. The
products contain the microcontroller(s) to be flashed. From now on, this
term is used regularly throughout this document.

Term „Target“

The term "target" is used to mean the microcontrollers to be flashed
(multiple microcontrollers can be flashed in a JTAG chain). From now on,
this term is used regularly throughout this document.

Term „Microcontroller to be flashed“

In addition to „flashing“ you can read out your microcontrollers‘ flash
memory (and e. g. save it as HEX file), verify it (e. g. against a HEX file),
erase or modify it. For the sake of intelligibility, only the process of

© halec 2019 1

roloFlash 2 AVR I Preface

„flashing“ gets mentioned from now on, without elaborating on the other
possibilities every time.

Characters „<“ and „>“

In descriptions of the functions and procedures, parameters are often
enclosed by „<“ and „>“. This is to indicate to replace the parameter with a
meaningful value (without the angle brackets):

Example:

delay <duration>

You could write, e. g.

delay 1000

to have a delay of 1 second.

© halec 2019 2

roloFlash 2 AVR II Scope of Delivery

II Scope of Delivery
Carefully check the package contents:

• roloFlash 2 AVR

• microSD card
- prepared for use in your roloFlash, containing documentation,
examples, firmware and roloBasic compiler
- for insertion into roloFlash‘s card slot

Note: The microSD card is either inserted into roloFlash or into the adapter
or is enclosed separately.

© halec 2019 3

roloFlash 2 AVR III Description

III Description

1 Programming Connector

The female 6-pin programming connector gets plugged either onto:

• a matching male connector on the target board to be programmed,
or

• a matching target board adapter (sold separately), which in turn
gets plugged onto the target board to be programmed.

On the front of roloFlash, you will find a pin-1-marking directly above the
programming connector.

The connector‘s contact spacing is 2.54 mm (0.1 inches).

1.1 Pin Assignments (Overview)

Depending on the configured bus, roloFlash‘s signal semantics can differ.

The pinout directly matches Atmel ISP, Atmel TPI, Atmel PDI, and Atmel
UPDI.

TPI ISP PDI UPDI UPDI PDI ISP TPI

Signal Pins Signal

DATA MISO DATA DATA
 1 ● ● 2

Vtarget Vtarget Vtarget Vtarget

CLK SCK
 3 ● ● 4

MOSI

RST RST CLK
 5 ● ● 6

GND GND GND GND

Table 1: Overview over target board pinouts in top view

Note:

There are numerous adapters available to adapt roloFlash‘s pinout to
various common programming connector pinouts; these adapters are
listed in the subchapters of the appropriate busses.

© halec 2019 4

roloFlash 2 AVR III Description

1.2 Pinout Atmel ISP Interface

When using the ISP interface, the following pinout is used:

Signal Pin Pin Signal

MISO 1   2 Vtargetboard

SCK 3   4 MOSI

RST 5   6 GND

Table 2: Top view of male ISP connector of a target board

The pinout directly matches Atmel ISP, so you can plug roloFlash directly
onto the target board, without adapter.

Note:

The following adapters are available to adapt the pinout to common
programming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-AVR-Target-Adapter 1:1 6p 6 2 2.54

roloFlash-2-AVR-Target-Adapter Atmel ISP/TPI 10p 10 2 2.54

1.3 Pinout Atmel TPI Interface

When using the TPI interface, the following pinout is used:

Signal Pin Pin Signal

TPIDATA 1   2 Vtargetboard

CLK 3   4

RST 5   6 GND

Table 3: Top view of male TPI connector of a target board

The pinout directly matches Atmel TPI, so you can plug roloFlash directly
onto the target board, without adapter.

Note:

© halec 2019 5

roloFlash 2 AVR III Description

The following adapters are available to adapt the pinout to common
programming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-AVR-Target-Adapter 1:1 6p 6 2 2.54

1.4 Pinout Atmel PDI Interface

When using the PDI interface, the following pinout is used:

Signal Pin Pin Signal

DATA 1   2 Vtargetboard

3   4

CLK 5   6 GND

Table 4: Top view of male PDI connector of a target board

The pinout directly matches Atmel PDI, so you can plug roloFlash directly
onto the target board, without adapter.

Note:

The following adapters are available to adapt the pinout to common
programming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-AVR-Target-Adapter 1:1 6p 6 2 2.54

1.5 Pinout Atmel UPDI Interface

When using the UPDI interface, the following pinout is used:

Signal Pin Pin Signal

UPDI-DATA 1   2 Vtargetboard

3   4

5   6 GND

Table 5: Top view of male UPDI connector of a target board

© halec 2019 6

roloFlash 2 AVR III Description

The pinout directly matches Atmel UPDI, so you can plug roloFlash
directly onto the target board, without adapter.

Note:

The following adapters are available to adapt the pinout to common
programming connector pinouts:

Description Pins Rows Spacing [mm]

roloFlash-2-AVR-Target-Adapter 1:1 6p 6 2 2.54

2 Pull-Up- / Pull-Down Resistors

For a well-defined voltage level on all pins, roloFlash employs internal pull-
up and pull-down resistors:

Resistor Signal Pin Pin Signal Resistor

Pull-up 1 MΩ MISO 1   2 Vtargetboard

Pull-down 1 MΩ SCK 3   4 MOSI Pull-up 1 MΩ

Pull-up 1 MΩ RST 5   6 GND

Table 6: Top view of matching male connector of a target board

3 Voltage Range

roloFlash gets powered by the target board via pin 2 (Vtargetboard), thereby all
data lines are adapted by roloFlash to this very voltage.

Voltage range: 2.0 Volt - 5.5 volts

4 Electrical Protection Measures

roloFlash is protected against:

• Voltage reversal of the supply voltage: The supply voltage line gets
disconnected.

© halec 2019 7

roloFlash 2 AVR III Description

• Overvoltage of the supply voltage: With voltages over 5.7 V, a
protection circuit disconnects the supply voltage line.

• All data lines are protected by polyswitches.

• In order to protect the target board, the second GND contact on
pin 5 is connected to GND on Pin 3 via a polyswitch.

• All lines are equipped with ESD protection components, which fulfill
IEC 61000-4-2 level 4 (15 kV (air discharge) , 8 kV (contact
discharge)).

These measures offer an extensive protection against operating errors like
voltage reversal etc. Nonetheless it cannot be excluded that operating
errors lead to damages to target board and/or roloFlash.

5 LEDs

roloFlash contains five programmable bi-color (red and green) LEDs on
the front. Using the LEDs, you can e. g.

• show a running light visualizing the flash process

• output errors in red

6 microSD Card Slot

The card slot is designed for a microSD or microSDHC card comprising
the compiled script to be run (RUN_V05.BIN) as well as the images to be
flashed.

7 Typical Usage

The typical course of action consists of two parts:

• Preparation of the microSD card on a PC (e. g. in development
department)

• Flashing of the target boards (e. g. by untrained personnel in production
department, customers or technicians in the field)

© halec 2019 8

roloFlash 2 AVR III Description

7.1 Preparation of the microSD card on a PC

E. g. in the development department

The authoritative source for program flow is the file "RUN_V05.BIN", which
gets processed by roloFlash to execute the program sequence encoded in
it. The supplement „V05“ correlates to the major-part of roloFlash‘s
software version.

• If you want to format a microSD card, do so using Windows 7 or higher
(Windows XP is not suitable).

• Model the desired process in roloBasic. For this, you can use or adapt
one of the many supplied sample scripts. In chapter „Specifications“ you
will find a list of exact names of microcontrollers known to roloFlash and
you can use in your roloBasic script. The file you create should have the
file extension „.BAS“.

• Your roloBasic file must start with a magic cookie line, which reads:

#roloFlash 2, v05.*

The start of the line, „#roloFlash 2“ is obligatory, otherwise the
roloBasic compiler will refuse compilation. The declaration of the version
number, e. g. „v05.*“, is optional, but recommended. It corresponds to
the major number of the of roloFlash‘s firmware version.

• Your script can point to standard „.HEX“ files (Intel HEX format: „I8HEX“,
„I16HEX“, and „I32HEX“) or to „.RAW“ files, which are to be flashed to
the target.

• On the PC, run the compiler „rbc_V05.exe“. This creates a compiled file
of the same name with the file extension „.BIN“.

• Rename the file to "RUN_V05.BIN" or instead of running "rbc_V05.exe"
run the batch file "compile_V05.bat", which creates "RUN_V05.BIN"
from "RUN_V05.BAS". After that, copy the file "RUN_V05.BIN" and the
files needed by the script (e. g. a ".HEX" file and possibly a required
loader file) to the microSD card, whereby RUN_V05.BIN must reside in
the root directory.

You can store the script files (".BAS"), the compiled files (".BIN") and the
compiler at your own discretion on the PC and/or on the microSD card.
roloFlash only evaluates the file "RUN_V05.BIN" (as well as the files being
referenced by the code).

© halec 2019 9

roloFlash 2 AVR III Description

Note: roloFlash AVR as well as the roloFlash 2 family with
softwareversions older than V05.AA do not use the supplement „_Vxx“ in
file names. This change makes it possible to prepare a microSD card with
multiple „RUN_Vxx.BIN“ files, so that this card can be used with
roloFlashes having different firmware versions. Every roloFlash used with
this card will choose the „RUN_Vxx.BIN“ file matching its firmware.

7.2 Flashing of the Target Boards

E. g. untrained personnel in the production department

Here, the course of action is very simple:

• Supply the target board with energy.

• Plug roloFlash onto the matching connector of the target board (or
connect it via an adapter).

• roloFlash gets powered by the target board and automatically starts
processing of the file „RUN_V05.BIN“, by which usually the actual
flashing is carried out. Meanwhile, e. g., a green running light visualizes
the flashing process.

• After successfully processing RUN_V05.BIN, which is usually indicated
by a green lit LED 5, remove roloFlash – done.

© halec 2019 10

roloFlash 2 AVR IV Updating roloFlash

IV Updating roloFlash

roloFlash has its own firmware which can get updated.

Version numbers

The version number is composed of major and minor:

• major:
Major gets updated when:
- the roloBasic interface (API) changes.

• minor:
Minor gets updated for changes that don‘t affect the roloBasic
interface, e. g.:
- Bug fixes
- Target database entries have been added
- Speed optimizations

Consequently, as long as major has not been updated, no update of the
roloBasic compiler is needed, and RUN_V05.BIN files already compiled
are still valid.

Filenames for the firmware update

The filename for the firmware update adheres to the usual 8.3 naming
convention of the FAT filesystem and is structured as follows:

RF2Aaabb.HMP where:

• aa = major (as number, e. g. „01“)

• bb = minor (as letter, e. g. „AA“)

Starting the update

• For updating, exactly one firmware file must be present in the root
directory of the microSD card. If multiple firmware files are present, the
update process will not start.

• The update process gets triggered when

- roloFlash gets plugged on any target without a microSD card its
card slot, and the microSD card gets plugged in afterwards, or

© halec 2019 11

roloFlash 2 AVR IV Updating roloFlash

- a previous update failed. In this case, the order of plugging
roloFlash on a target and inserting the microSD card does not
matter.

• There is no check if the firmware on the microSD card is newer or older
than roloFlash‘s currently used firmware. Thus, you can return to an
older version, if you ever need to.

Note: The prepared microSD card that comes with roloFlash contains the
current firmware version in a subdirectory (usually named "firmware"). This
file will only be considered for an update, if it gets copied (or moved) to the
root directory of the microSD card.

The update process

• During the process, the target board merely serves as a power supply
for roloFlash.

• The process gets visualized using roloFlash‘s LEDs, see chapter
„roloFlash Update“.

• As long as the microSD card has not yet been inserted, LED 1 is lit red.

• During the update, LED 2 and LED 3 blink alternatively. roloFlash
should not be removed during the update process.
FIf, however, roloFlash has been removed during the process, the
firmware stored inside roloFlash might be defective. In this state,
roloFlash should automatically insist on a new update, i. .e upon the
next connection to a power source (usually a target board), roloFlash
keeps waiting, until a microSD card with a valid firmware file is inserted.
This file is then used for the update, which starts immediately after
detection of the firmware file.
If an update process got interrupted, do repeat the update process,
even if you‘re under the impression that the interrupted process
was successful in the end.

• Upon success, LED 1 and LED 2 are lit green afterwards.

• roloFlash remains in this state until removed from the target board.
Please remove roloFlash now.

• As of the next time you plug on roloFlash on a target board, it runs with
the updated firmware.

If the update process has not been successful, please use a microSD card
which:

© halec 2019 12

roloFlash 2 AVR IV Updating roloFlash

• has been freshly formatted with FAT32 under Windows 7 or higher,
and

• solely contains the file for the firmware update.

Note:

It is recommended that no firmware files are left on the microSD card, if it
is to be used in the production department or handed over to a customer.

© halec 2019 13

roloFlash 2 AVR V List of Supplied roloBasic Scripts

V List of Supplied roloBasic
Scripts

1 Hello world

Location:

• scripts\hello-world\RUN_V05.BAS

• Additionally, this script as well as the compiled RUN_V05.BIN are in
the microSD card‘s root directory on delivery.

Preparation:

• To use it, copy the script as RUN_V05.BAS to the microSD card‘s root
directory.

• Start the compiler using „compile_V05.bat“ in order to create the
required RUN_V05.BIN from RUN_V05.BAS.

Function:

• Removes a possibly existent previous LOG.TXT file.

• Writes some text to the LOG.TXT file, including „Hello world“.

• Shows a green running light from LED 1 to LED 4 for 3 seconds.

• Shows a red running light from LED 1 to LED 4 for 3 seconds.

• Shows a green running light from LED 4 to LED 1 for 3 seconds.

• Shows a red running light from LED 4 to LED 1 for 3 seconds.

• Finally, LED 5 lights up green.

2 Versions

Location:

© halec 2019 14

roloFlash 2 AVR V List of Supplied roloBasic Scripts

• scripts\versions\RUN_V05.BAS

Preparation:

• To use it, copy the script as RUN_V05.BAS to the microSD card‘s root
directory.

• Start the compiler using „compile_V05.bat“ in order to create the
required RUN_V05.BIN from RUN_V05.BAS.

Function:

• Removes a possibly existent previous LOG.TXT file.

• Writes roloFlash‘s version numbers etc. to the LOG.TXT file:

• Company Name

• Device name

• Software Version

• Hardware Version

• Bootloader Version

• Image Version

• Finally, LED 5 lights up green.

3 Erase-and-Flash

Location:

• scripts\Microchip_Atmel\AVR\ISP\erase-and-flash\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\TPI\erase-and-flash\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\PDI\erase-and-flash\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\UPDI\erase-and-flash\RUN_V05.BAS

Preparation:

• This script is available in a version for Atmel ISP, Atmel TPI, Atmel
PDI and Atmel UPDI microcontrollers, respectively.

© halec 2019 15

roloFlash 2 AVR V List of Supplied roloBasic Scripts

• To use it, copy the version of the script matching your microcontroller
as RUN_V05.BAS to the microSD card‘s root directory.

• Subsequently adapt the name of your target and the filename of the
HEX file for the flash memory in the script and optionally specify
another HEX file for the EEPPROM.

• Optionally, you can adapt the bus speed as well as roloFlash‘s CPU
frequency.

• Start the compiler using „compile_V05.bat“ in order to create the
required RUN_V05.BIN from RUN_V05.BAS.

Function:

• Starts a running light from LED 1 to LED 4 to visualize the flash
process.

• Removes a possibly existent previous LOG.TXT file.

• Opens the appropriate bus for the target.

• From the internal target database, roloFlash reads information specific
to the microcontroller you specified, including the ID in form of a
signature or device ID, as well as other parameters required for
flashing.

• Reads the ID(s) of the connected target and compares it to the values
from the database.

• Should the ID(s) mismatch (e. g. different microcontroller), the process
aborts with output of an error message.

• Erases the target‘s flash memory (mass erase).

• If specified by you: Your HEX file gets written to the target‘s flash
memory, while simultaneously getting verified.

• Your HEX file gets written to the target‘s EEPROM, while
simultaneously getting verified.

• Meanwhile, a green running light is shown, and if successful, LED 5
lights up green at the end.

• Writes results to log file (LOG.TXT).

4 Read

Location:

© halec 2019 16

roloFlash 2 AVR V List of Supplied roloBasic Scripts

• scripts\Microchip_Atmel\AVR\ISP\read\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\TPI\read\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\PDI\read\RUN_V05.BAS

• scripts\Microchip_Atmel\AVR\UPDI\read\RUN_V05.BAS

Preparation:

• This script is available in a version for Atmel ISP, Atmel TPI, Atmel
PDI and Atmel UPDI microcontrollers, respectively.

• To use it, copy the version of the script matching your microcontroller
as RUN_V05.BAS to the microSD card‘s root directory.

• Subsequently adapt the name of your target and the filename of the
HEX file for the flash memory in the script and optionally specify
another HEX file for the EEPPROM.

• Optionally, you can adapt the bus speed as well as roloFlash‘s CPU
frequency.

• Start the compiler using „compile_V05.bat“ in order to create the
required RUN_V05.BIN from RUN_V05.BAS.

Function:

• Starts a running light from LED 4 to LED 1 to visualize the reading
process.

• Removes a possibly existent previous LOG.TXT file.

• Opens the appropriate bus for the target.

• From the internal target database, roloFlash reads information specific
to the microcontroller you specified, including the ID in form of a
signature or device ID, as well as other parameters required for
flashing.

• Reads the ID(s) of the connected target and compares it to the values
from the database.

• Should the ID(s) mismatch (e. g. different microcontroller), the process
aborts with output of an error message.

• If specified by you: The target‘s flash memory gets completely read
out and written to the HEX file specified.

• If specified by you: The target‘s EEPROM gets completely read out
and written to the HEX file specified.

© halec 2019 17

roloFlash 2 AVR V List of Supplied roloBasic Scripts

• Meanwhile, a green running light is shown, and if successful, LED 5
lights up green at the end.

• Writes results to log file (LOG.TXT).

© halec 2019 18

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

VI roloFlash API (List of
Procedures and Functions)

API (Application Programming Interface) means the interface roloBasic
needs to access all roloFlash specific procedures and functions.

You can also call the procedures and functions directly.

Procedures:

Procedures do not have a return value. Specified parameters must
be given without parentheses.

Example:

delay 1000

Functions:

Functions have a return value. Specified parameters must be given
in parentheses.

Example:

handle = fs_open(0, "TEST.TXT")

If the function does not have any parameters, the parentheses can
be dispensed with.

Example:

value = getTargetBoardVoltage

or

value = getTargetBoardVoltage()

© halec 2019 19

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

1 Internal Database

roloFlash has an integrated database containing information for many
targets. This information serves the following purposes:

• To check in roloBasic if it is really the desired target that is
connected (e. g. Atmel signature or device ID).

• To provide data required for flashing.

Using the name of the desired controller, you can obtain a handle from the
database and utilize it to request further information. This handle does not
have to be closed afterwards.

1.1 DB_getHandle

Get database handle for specified target.

dbHandle = DB_getHandle(<name>)

Prerequisites:

- none

Parameters:

name

Name of target. The name stored in the database might be
abbreviated, e. g. if there are multiple targets differing only e. g. in
their circuit packaging type (DIL, PLCC, QFP, BGA, ...) while having
otherwise identical parameters. Please look up the correct name for
your controller in the list of supported microcontrollers, and mind the
letter case.

Return value:

- a database handle. Can be used to get information about target using
DB_get.

© halec 2019 20

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

unknownTarget Target is unknown in target database
apiTypeFault Invalid data type for "name"

1.2 DB_get

Inquire information about specific properties of a target.

Value = DB_get(<dbHandle>, <property>)

Prerequisites:

- valid database handle

Parameters:

dbHandle

Handle for accessing the database, see DB_getHandle

property

Type of information to determine. Not all properties are available for
all database handles. In case a property cannot be determined, an
exception is generated. Possible values for "property" are:
DB_NAME: Name of target. (Can be shorter than the name used for
getting the database handle)
DB_FAMILY: A value denoting membership of a certain family of
microcontrollers. This value is required to obtain a target handle (see
target_open).
DB_FLASHSIZE: Size of flash memory in bytes.
DB_FLASHPAGESIZE: Page size in bytes for writing of memory with
certain page sizes (e. g. Atmel AVR and Atmel Xmega).
DB_EEPROMSIZE: Size of EEPROM in bytes.
DB_EEPROMPAGESIZE: Page size in bytes for writing of EEPROM
with certain page sizes (e. g. Atmel Xmega).
DB_DEVICEID: Device ID or Signature (e. g. Atmel) (array with 3
bytes)

Return value:

© halec 2019 21

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- Value of inquired property

Exceptions:

propertyNotFound The desired value is unknown or does not exist
(e. g. DB_COREIDCODE for non-JTAG targets)

apiTypeFault Invalid data type for dbHandle or property

2 Busses

Principally, roloFlash considers every interface, that can be used to flash a
target, to be a bus.

This holds true even if the interface inherently allows only one
microcontroller to be connected (e. g. the ISP interface for Atmel AVR is
construed as bus).

• Generally, a bus must be opened first.

• In the appropriate function (bus_open) checks if the bus is
available. If it is already opened, an exception is generated
(resourceUnavailable). The same exception is generated if another
bus is already open its signals or internal resources would overlap
with the bus to be opened.

• A microcontroller (target) attached to a bus can be addressed only
after obtaining a target handle from this bus.

• The connection to a target handle can be closed again.

• A bus can be closed, too. In this case, the signal lines affected
become high-impedance again.

2.1 bus_open

busHandle = bus_open(<busType>, <index>, <speed>...)

Opens the appropriate bus of type <busType> and provides a bus handle.
Depending on the bus, one or more signal lines could be initialized in the
process.

© halec 2019 22

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Depending on the bus used, there can be further parameters. Usually, a
bus speed is specified; if not, you can look up the appropriate function in
the respective subchapter of the bus used.

Prerequisites:

- none

Parameters:

busType

Determines the type of bus to be opened. Available busses are:

• ISP
• PDI
• UPDI
• TPI

index

Specifies the number of the bus to be opened. The first bus has
index 0.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash. Supported bus
speeds are listed in the appropriate subchapter for the bus used.

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value.

Return value:

- a bus handle. This can be used to call other functions, e. g. target_open.

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

© halec 2019 23

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

2.2 bus_close

bus_close <busHandle>

Closes the given bus. The affected signal lines become deactivated in the
process.

If the bus happens to have open targets present, these targets become
detached and their target handles become invalid.

Prerequisites:

- valid bus handle

Parameters:

busHandle

The bus handle for the open bus.

Return value:

- none (procedure)

Exceptions:

invalidHandle Handle has been closed already
apiTypeFault Invalid type for busHandle

2.3 bus_setSpeed

bus_setSpeed <busHandle>, <speed>

© halec 2019 24

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Changes the speed of an already open bus. The maximal speed gets
capped to „speed“. If a target is connected to this bus, the programming
speed of the target results from the specified speed.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash. Supported bus
speeds are listed in the appropriate subchapter for the bus used.

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for speed
apiTypeFault Invalid type for busHandle or speed

© halec 2019 25

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

2.4 bus_getSpeed

speed = bus_getSpeed(<busHandle>)

Queries the current bus speed for an open bus. It can be the same or less
than the bus speed specified with bus_open or bus_setSpeed,
respectively.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open.

Return value:

- Bus speed in Hz

Exceptions:

apiTypeFault Invalid type for busHandle

2.5 Atmel ISP Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the ISP bus.

2.5.1 bus_open(ISP, …) and Available Speeds

busHandle = bus_open(ISP, <index>, <speed>)

Opens the ISP bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

© halec 2019 26

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- none

Parameters:

busType

ISP for ISP bus.

index

Must be 0.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434

© halec 2019 27

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000 98684 97402 96153 94936
 93750 92592 91463 90361 89285
 88235 87209 86206 84745 83333
 81967 80645 79365 78125 76923
 75757 74626 73529 72463 71428
 70422 69124 67873 66666 65502
 64377 63291 62240 61224 60000
 58823 57692 56603 55555 54545
 53380 52264 51194 50167 49019
 47923 46875 45871 44776 43731
 42613 41551 40540 39473 38461
 37406 36319 35294 34246 33185
 32119 31055 30000 28957 27932
 26929 25906 24875 23847 22831
 21802 20775 19762 18750 17730
 16722 15706 14705 13698 12690
 11682 10676 9671 8670 7668
 6666 5664 4662 3661 2660
 1659

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000
 93750 88235 83333 78947 75000
 71428 68181 65217 62500 60000
 57692 55555 53571 51724 50000
 48387 46875 45454 44117 42857
 41666 40540 39473 38461 36585
 34883 33333 31914 30612 29411
 28301 27272 25862 24590 23437
 22388 21126 20000 18987 17857
 16853 15789 14705 13636 12605
 11538 10489 9433 8426 7425
 6410 5395 4385 3378 2377
 1376

© halec 2019 28

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g.
getTargetPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.5.2 Configure Reset Mode

bus_resetMode <busHandle> <resetMode>

Sets the reset mode for the ISP bus.

After opening the ISP bus, the reset mode is set to pushpull, i. e.:

- If no reset is applied, the RST line is active high.

- If a reset is applied, the RST line is active low.

© halec 2019 29

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open

rstMode

- PIN_ACTIVELOW:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active low.

- PIN_ACTIVEHIGH:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active high.

- PIN_PUSHPULL:
 - If no reset is applied, the rST line is active high.
 - If a reset is applied, the RST line is active low.

- PIN_INVERTED:
 - If no reset is applied, the rST line is active low.
 - If a reset is applied, the RST line is active high.

Note:

- The rstModes PIN_ACTIVEHIGH and PIN_INVERTED are inverted,
compared to the usual reset functions and pull the line to high for a reset.
This is only useful for controllers the reset of which is active high. In this
case, PIN_INVERTED is recommended.

Return value:

- none.

Exceptions:

apiTypeFault Invalid type for busHandle

© halec 2019 30

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

2.6 Atmel TPI Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the TPI bus.

2.6.1 bus_open(TPI, …) and Available Speeds

busHandle = bus_open(TPI, <index>, <speed>)

Opens the TPI bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

Prerequisites:

- none

Parameters:

busType

TPI for TPI bus.

index

Must be 0.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000

© halec 2019 31

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000 98684 97402 96153 94936
 93750 92592 91463 90361 89285
 88235 87209 86206 84745 83333
 81967 80645 79365 78125 76923
 75757 74626 73529 72463 71428
 70422 69124 67873 66666 65502
 64377 63291 62240 61224 60000
 58823 57692 56603 55555 54545
 53380 52264 51194 50167 49019
 47923 46875 45871 44776 43731
 42613 41551 40540 39473 38461
 37406 36319 35294 34246 33185
 32119 31055 30000 28957 27932
 26929 25906 24875 23847 22831
 21802 20775 19762 18750 17730
 16722 15706 14705 13698 12690
 11682 10676 9671 8670 7668
 6666 5664 4662 3661 2660
 1659

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000
 93750 88235 83333 78947 75000

© halec 2019 32

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

 71428 68181 65217 62500 60000
 57692 55555 53571 51724 50000
 48387 46875 45454 44117 42857
 41666 40540 39473 38461 36585
 34883 33333 31914 30612 29411
 28301 27272 25862 24590 23437
 22388 21126 20000 18987 17857
 16853 15789 14705 13636 12605
 11538 10489 9433 8426 7425
 6410 5395 4385 3378 2377
 1376

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g.
getTargetPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

© halec 2019 33

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

2.6.2 Configure Reset Mode

bus_resetMode <busHandle> <resetMode>

Sets the reset mode for the TPI bus.

After opening the TPI bus, the reset mode is set to pushpull, i. e.:

- If no reset is applied, the RST line is active high.

- If a reset is applied, the RST line is active low.

Prerequisites:

- valid bus handle

Parameters:

busHandle

Bus handle obtained from bus_open

rstMode

- PIN_ACTIVELOW:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active low.

- PIN_ACTIVEHIGH:
 - If no reset is applied, the RST line is high-impedance.
 - If a reset is applied, the RST line is active high.

- PIN_PUSHPULL:
 - If no reset is applied, the rST line is active high.
 - If a reset is applied, the RST line is active low.

- PIN_INVERTED:
 - If no reset is applied, the rST line is active low.
 - If a reset is applied, the RST line is active high.

© halec 2019 34

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Note:

- The rstModes PIN_ACTIVEHIGH and PIN_INVERTED are inverted,
compared to the usual reset functions and pull the line to high for a reset.
This is only useful for controllers the reset of which is active high. In this
case, PIN_INVERTED is recommended.

Return value:

- none

Exceptions:

apiTypeFault Unzulässiger Typ für busHandle

2.7 Atmel PDI-Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the PDI bus.

2.7.1 bus_open(PDI, …) and Available Speeds

busHandle = bus_open(PDI, <index>, <speed>)

Opens the PDI bus and initializes the signal lines. The maximal bus speed
gets capped to „speed“. Sets the programming speed for the target.

Prerequisites:

- none

Parameters:

busType

PDI for PDI bus.

index

Must be 0.

© halec 2019 35

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

15000000 7500000 5000000 3750000 3000000
 2500000 2142857 1875000 1666666 1500000
 1363636 1250000 1153846 1071428 1000000
 937500 882352 833333 789473 750000
 714285 681818 652173 625000 600000
 576923 555555 535714 517241 500000
 483870 468750 454545 441176 428571
 416666 405405 394736 384615 375000
 365853 357142 348837 340909 333333
 326086 319148 312500 306122 300000
 294117 288461 283018 277777 272727
 267857 263157 258620 254237 250000
 245901 241935 238095 234375 230769
 227272 223880 220588 217391 214285
 211267 208333 205479 202702 200000
 197368 194805 192307 189873 187500
 185185 182926 180722 178571 176470
 174418 172413 170454 168539 166666
 164835 163043 161290 159574 157894
 156250 154639 153061 151515 150000
 148514 147058 145631 144230 142857
 141509 140186 138888 137614 136363
 135135 133928 132743 131578 130434
 129310 128205 127118 126050 125000
 123966 122950 120967 119047 117187
 115384 113636 111940 110294 108695
 107142 105633 104166 102739 101351
 100000

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 1500000 750000 500000 375000 300000
 250000 214285 187500 166666 150000
 136363 125000 115384 107142 100000

© halec 2019 36

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value. Atmel specifies the minimal bus
speed as 100 kHz. Values smaller than that get rounded to 100 kHz.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g.
getTargetPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

2.8 Atmel UPDI Bus

General information about busses can be found in the superior chapter.
Based on this, this chapter elaborates on behavior specific to the UPDI
bus.

2.8.1 bus_open(UPDI, …) and Available Speeds

busHandle = bus_open(UPDI, <index>, <speed>)

Opens the UPDI bus and initializes the signal lines. The maximal bus
speed gets capped to „speed“. Sets the programming speed for the target.

© halec 2019 37

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- none

Parameters:

busType

UPDI for UPDI bus.

index

Must be 0.

speed

The speed of the bus in Hz. The supported bus speeds depend on
the CPU clock (sys_setCpuClock) of roloFlash.

At a maximal CPU clock rate of 120 Mhz, the following bus speeds
are supported:

 500000 483870 468750 454545 441176
 428571 416666 405405 394736 384615
 375000 365853 357142 348837 340909
 333333 326086 319148 312500 306122
 300000 294117 288461 283018 277777
 272727 267857 263157 258620 254237
 250000 245901 241935 238095 234375
 230769 227272 223880 220588 217391
 214285 211267 208333 205479 202702
 200000 197368 194805 192307 189873
 187500 185185 182926 180722 178571
 176470 174418 172413 170454 168539
 166666 164835 163043 161290 159574
 157894 156250 154639 153061 151515
 150000 148514 147058 145631 144230
 142857 141509 140186 138888 137614
 136363 135135 133928 132743 131578
 130434 129310 128205 127118 126050
 125000 123966 122950 120967 119047
 117187 115384 113636 111940 110294
 108695 107142 105633 104166 102739
 101351 100000 98684 97402 96153
 94936 93750 92592 91463 90361

© halec 2019 38

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

 89285 88235 87209 86206 84745
 83333 81967 80645 79365 78125
 76923 75757 75000

At a minimal CPU clock rate of 24 Mhz, the following bus speeds are
supported:

 375000 300000 250000 214285 187500
 166666 150000 136363 125000 115384
 107142 100000 93750 88235 83333
 78947 75000

If the specified frequency is unsupported, it gets rounded down
internally to the next possible value. Atmel specifies the minimal bus
speed as 100 kHz. Values smaller than that get rounded to 100 kHz.

Note:

If the interface is already open when you change roloFlash‘s clock rate
using sys_setCpuClock, the bus speed changes with it. The following
course of action is therefore recommended:

• Use sys_setCpuClock first and open the bus afterwards.

• Or, after using sys_setCpuClock, set the bus speed again using
bus_setSpeed.

Return value:

- a busHandle. This can be used to call other functions, e. g.
getTargetPresent

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for index
resourceUnavailable The bus cannot be opened. Possible causes:

- bus is already open
- another bus has been opened, and opening
this bus simultaneously is impossible

© halec 2019 39

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

3 Target in General

To obtain access to a target, a target handle has to be requested from a
previously opened bus. All functionality regarding the target is then carried
out specifying this very target handle. With roloFlash, every interface that
can be used to flash a target, is considered a bus. This holds true even if
the interface inherently allows only one microcontroller to be connected
(e. g. the ISP interface for Atmel AVR is construed as bus).

• Generally, the appropriate bus the target belongs to has to be
opened beforehand.

• A microcontroller (target) attached to the bus can be addressed
only after a target handle was obtained from the bus first.

• The connection to a target can be closed again.

• If a bus gets closed, the target gets closed, too.

3.1 target_open

targetHandle = target_open(<busHandle>, <index>,
<family>)

Enables access to a target and returns a target handle.

Note:

This function does not check if a target is actually connected. If this is to
be checked, target_getPresent can be used.

Prerequisites:

- valid bus handle

Parameters:

busHandle

© halec 2019 40

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Bus handle for the opened bus.

index

Determines which target on the bus gets opened. The manner of
counting depends on the bus. In most cases, the targets are
numbered consecutively, the first target has index 0.
For busses that only support one target, an index of 0 has to be
specified.
Note:
Please specify 0 for busses only supporting one target (e. g. ISP
bus).

family

This parameter determines the controller family the target controller
belongs to. Its value can be given either directly (see below) or
identified by querying the internal database beforehand. Possible
families:

• ATMELISP
• ATMELPDI
• ATMELUPDI
• ATMELTPI

Return value:

- a target handle. It can be used to call other functionns, e. g.
target_getPresent.

Exceptions:

apiValueRange Invalid value for index
apiTypeFault Invalid type for busHandle or index
invalidHandle Invalid busHandle (e. g. already closed)

3.2 target_close

target_close <targetHandle>

© halec 2019 41

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Closes the given target.

Prerequisites:

- valid target handle

Parameters:

targetHandle

Target handle for the target to be closed.

Return value:

- none (procedure)

Exceptions:

invalidHandle The target handle or the corresponding bus has
already been closed

apiTypeFault Invalid type for targetHandle

3.3 target_getPresent

value = target_getPresent(<targetHandle>)

Detects if a target is connected. The operating mode remains unchanged.
The detection process always involves an actual communication with the
target, so that current information can be obtained.

Note for Atmel ISP bus:

If the target is in RunMode, it temporarily gets reset and put into
ProgramMode. At the end of the detection process, the reset signal gets
supended and the target reaches RunMode again. A program that might
be running on the target gets thusly restarted.

If the target is already in ProgramMode, the same query process applies,
but the target stays in ProgramMode all the time.

© halec 2019 42

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Note for Atmel PDI bus and Atmel UPDI bus:

A query over PDI/UPDI is carried out independently of the target being in
RunMode or ProgramMode. The target remains in the respective mode. A
reset does not take place.

Annotation:

With roloFlash, there should always be a target connected, as roloFlash
would not be powered otherwise. This function is intended mainly for
roloFlash variants that have their own power supply

It is also conceivable that roloFlash gets plugged onto something other
than a target. Therefore, this function establishes an actual communication
with the target.

Prerequisites:

- valid target handle

Parameters:

targetHandle

The target handle for the target to be addressed.

Return value:

0 = no target found

1 = target found

Exceptions:

invalidHandle The target handle or the corresponding bus has
already been closed

apiTypeFault Invalid type for targetHandle

© halec 2019 43

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

The target can be in the following operating modes:

RunMode

Target runs normally, as if roloFlash was not connected.
ProgramMode

Target can be programmed (flashed).

The procedure target_setMode changes the operating mode.

Other procedures or functions depend on a certain operating mode.
Where this is the case, it is detailed in the appropriate procedure or
function description.

3.4 target_setMode

target_setMode <targetHandle>, <targetMode>

Puts both target and roloFlash into the given operating mode.

The target can be in the following operating modes:

RunMode

Target runs normally, as if roloFlash was not connected.
ProgramMode

Target can be programmed (flashed).

Other procedures or functions depend on a certain operating mode.
Where this is the case, it is detailed in the appropriate procedure or
function description.

Prerequisites:

- valid target handle

© halec 2019 44

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

targetHandle

The target handle for the target to be addressed.

targetMode

Specification of desired mode:
PROGRAMMODE: This mode is a requirement for the majority of
functions involving a target, especially for writing of flash memory. In
the course of this, the target can get stopped, depending on the
target family.
RUNMODE: The target is running. If the target contains software, it
gets executed.

Return value:

- none (procedure)

Note for Atmel ISP-Bus:

• programMode: If the target is in RunMode, the target gets put into the
"Programming Enable Mode" and gets held in reset state. A program
potentially present on the target will be stopped in the process.

• runMode: The „Programming Enable Mode“ is suspended, as well as
the reset state. The targets starts running immediately afterwards.

Note for Atmel PDI bus:

• ProgramMode: Does not affect whether the target is currently running or
not. In this mode, only initializations for accessing target memory via PDI
are carried out.

• runMode: The PDI clock is stopped, and subsequently, the
"Programming Mode" is terminated. The target issues a reset and starts
running.

© halec 2019 45

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Note for Atmel UPDI bus:

• programMode: If the target is in RunMode, the target gets put into the
"Programming Enable Mode" and gets held in reset state. A program
potentially present on the target will be stopped in the process.

• runMode: The „Programming Enable Mode“ is suspended, as well as
the reset state. The targets starts running immediately afterwards.

• If the target is in "Programming Enable Mode" while roloFlash gets
removed, the target remains in this mode. A program potentially preset
on the target does not start unless the target‘s power supply gets
interrupted for a short time. Starting the target can be forced by calling
target_setMode with the parameter runMode, before removing
roloFlash. Alternatively, you can close the targetHandle using
target_close.

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

3.5 target_restart

target_restart <targetHandle>

Restarts the target, which returns to the same operating mode:

RunMode

A reset is applied briefly, then deactivated. Therefore, the target
starts running from the beginning. RunMode is maintained.

ProgramMode

A reset cycle is applied, too, after which the ProgramMode gets
restored. Meanwhile, if there is a firmware present on the target, it
could have run for a short period of time.

© halec 2019 46

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

It is recommended to employ this command only if it either cannot critically
do any harm, or if there is no firmware on the target.

Note for Atmel ISP bus:

The "Programming Enable Mode" as well as the reset get suspended. The
target starts running immediately afterwards.

RunMode

Reset gets activated briefly (100 ms), then deactivated again.
Therefore, the target starts running from the beginning. RunMode is
maintained.

ProgramMode

Reset gets suspended briefly (3 ms), and ProgramMode gets
restored afterwards. Meanwhile, if there is a firmware on the target, it
could have run for a short period of time.

Application Example for Targets with Atmel ISP Interface:

The procedure is necessary, e. g. when changing fuses on the target, and
the changes should be in effect immediately. This applies in particular for
activating a quartz for the target, which subsequently enables a higher
programming speed:

! Activate quartz to enable higher
! programming speeds:
target_writeBits(targetHandle, FUSES_LOW, value)

! Activate the changes by using target_restart
target_restart targetHandle

bus_setSpeed(bushandle, 1000000) ! e.g. 1 MHz

target_writeFromFile ...

Note for Atmel PDI-Bus:

© halec 2019 47

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Altough the reset line is part of the PDI bus, it does not get used as such
for PDI. Consequently, the bus can be used without holding the target in
reset state.

RunMode

Reset gets activated briefly (100 ms), then deactivated again.
Therefore, the target starts running from the beginning. RunMode is
maintained.

ProgramMode

The PDI bus is deactivated, a reset gets triggered (100 ms), then the
PDI bus gets activated again and ProgramMode gets restored. The
target starts running from the beginning.

Note for UPDI bus :

Since roloFlash conceptually does not consider the UPDI bus to have a
reset line, this command is not available.

Prerequisites:

- valid target handle

Parameters:

targetHandle

The target handle for the target to be addressed.

Return value:

- none (procedure)

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

© halec 2019 48

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

3.6 Read/Write Target Memory Map

For different memory types within the targets, roloFlash supports a so-
called memory map. Depending on target and memory type, it can provide
information about different properties of the memory; these properties can
configured by the user, some of them have to be configured before
flashing. Oftentimes, the required values can be found in the database.

The example scripts are a good starting point here.

3.6.1 target_setMemoryMap

target_setMemoryMap <targetHandle>, <memType>,
<memProperty> <value>

Sets the specified property for the specified memory type to the value
given.

Prerequisites:

- valid targetHandle

Parameters:

targetHandle

Target handle for the target to be addressed

memType

Type of memory:

FLASH: Flash memory
RAM: RAM
EEPROM: EEPROM

memProperty

Memory property to be set:

MEM_STARTADDR: Start address of memory
MEM_SIZE: Size of memory in bytes
MEM_PAGESIZE: For some targets: Size of a memory page

© halec 2019 49

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

value

The value to be set

Return value:

- none (procedure)

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
FunctionNotSupported Invalid combination of MemType and Property
apiTypeFault Invalid type for targetHandle
ValueNotAllowed Invalid value

3.6.2 target_getMemoryMap

value = target_getMemoryMap(<targetHandle>, <memType>,
<memProperty>)

Determines the specified property‘s value for the given memory type.

Prerequisites:

- gültiges targetHandle

Parameters:

targetHandle

Das Target-Handle auf das anzusprechende Target

memType

Memory type:

© halec 2019 50

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

FLASH: Flash memory
RAM: RAM
EEPROM: EEPROM

memProperty

Memory property:

MEM_STARTADDR: Start address of memory
MEM_SIZE: Size of memory in bytes
MEM_PAGESIZE: For some targets: Size of a memory page

Return value:

- Determined value

Exceptions:

targetCommunication Communication with the target does not work.
invalidHandle The target handle or the corresponding bus has

already been closed
FunctionNotSupported Invalid combination of MemType and Property
apiTypeFault Invalid type for targetHandle
valueUnknown Value cannot be determined

3.6.3 target_clearMemoryLayout

target_clearMemoryLayout <targetHandle>

Clears an existing memory layout (memory map).

Prerequisites:

- valid targetHandle

- target must be in ProgramMode

Parameters:

targetHandle

Target handle for target to be addressed

© halec 2019 51

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
invalidHandle The target handle or the corresponding bus has

already been closed
apiTypeFault Invalid type for targetHandle

3.7 Erase, Write, Read and Verify Target

3.7.1 target_eraseFlash

target_eraseFlash <targetHandle>

Erases the target‘s entire Flash memory. With some targets, the EEPROM
gets automatically erased in the process, too (see Atmel fuse „EESAVE“).
Details can be found in the appropriate data sheet of a target.

Prerequisites:

- valid targetHandle

- target must be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

- none (procedure)

© halec 2019 52

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communikation with the target does not work.
invalidHandle Target handle or the appropriate bus has already

been closed.
apiTypeFault Invalid type for the target handle.

3.7.2 target_writeFromFile

target_writeFromFile <targetHandle>, <filesystem>,
<filename>, <fileformat>, <memType>, <verify>,
<startAddr>

Writes a file to the target‘s memory.

Prerequisites:

- valid target handle

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed

filesystem

This parameter is ignored should be specified as 0.

filename

The requirements for file names apply, see chapter „Files“.

fileformat

Format of given file. Possible values:
HEX: Intel-HEX format (ASCII file)
RAW: Raw format (binary file with raw data and no address)

memType

© halec 2019 53

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

verify

Specifies if verification should be carried out. Possible values:
WRITEONLY: Write without verification
VERIFYONLY: Data is verified only (nothing gets written to target
memory)
WRITEVERIFY: Write and verify

startAddr

(optional). This parameter is for raw format files only. As raw files do
not contain any address specification, this parameter is used to pass
that information to roloFlash.

Return value:

- none (procedure)

Note for Verify = WRITEVERIFY

The data that has just been written to the target get read back from the
target and compared to the data read from file. For this, said data do not
get read and decoded a second time from the microSD card, but the data
copy already buffered in roloFlash‘s RAM is used instead. This way, any
read faults regarding the microSD cards cannot be detected. However,
with HEX files, the contained CRC values are read out and verified, so that
reading errors are consequently unlikely.

If you want to further increase data integrity, use this function twice: First
with "verify = WRITEONLY" and then with "verify = VERIFYONLY". This
procedure may take longer than a single call with "verify =
WRITEVERIFY".

© halec 2019 54

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

targetMemoryLayout,
hexFileSize,
hexFileCRC

See chapter „Exceptions of roloFlash“.

targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has already

been closed.
targetVerify During verification, different data has been read.

Possible causes:
- Communikation problems
- Data rate too high
- Target has not been erased previously (affects
predominantly Flash memory)

<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.7.3 target_readToFile

target_readToFile <targetHandle>, <filesystem>,
<filename>, <fileformat>, <memType>, <startAddr>,
<length>

Reads from target memory, creates a new file, and writes the read data
into that file in the format specified.

Prerequisites:

- valid target handle

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed.

filesystem

© halec 2019 55

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

This parameter is ignored should be specified as 0.

filename

The requirements for file names apply, see chapter „Files“. If the file
exists, it will be overwritten.

fileformat

File format to use for writing. Possible values:
HEX: Intel-HEX format (ASCII file)
RAW: Raw format (binary file with raw data and no adddress)

memType

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

startAddr

First address to read from.

length

Number of bytes to read.

Return value:

- none (procedure)

Note for verification while reading

To achieve a verification similar to the one used when writing to the target,
you can verify the read file by subsequently calling
target_writeFromFile with "verify = verifyOnly".

© halec 2019 56

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

targetMemoryLayout,
hexFileSize,
hexFileCRC

See chapter „Exceptions of roloFlash“.

targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has already

been closed.
<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.7.4 target_write

target_write <targetHandle>, <dataArray>, <memType>,
<verify>, <startAddr>

Writes a roloBasic data array to the target‘s memory.

Prerequisites:

- valid targetHandle

- target has to be in ProgramMode

Parameters:

targetHandle

Target handle for the target to be addressed

dataArray

A char array containing the data to be written.

memType

Which memory type to write to. This value is specific to the particular
target family and is described in the respective chapters.

verify

Specifies if verification should be carried out. Possible values:
WRITEONLY: Write without verification

© halec 2019 57

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

VERIFYONLY: Data is verified only (nothing gets written to target
memory)
WRITEVERIFY: Write and verify

startAddr

Target memory address to write the data to.

Return value:

- none (procedure)

Exceptions:

targetMemoryLayout See chapter „Exceptions of roloFlash“.
targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has already

been closed.
targetVerify During verification, different data has been read.

Possible causes:
- Communikation problems
- Data rate too high
- Target has not been erased previously (affects
predominantly Flash memory)

<various file system
exceptions>

See chapter „Exceptions of the File System“.

3.7.5 target_read

DataArray = target_read(<targetHandle>, <memType>,
<startAddr>, <length>)

Reads from target memory, creates a roloBasic char array, and fills this
array with the data read from target.

Prerequisites:

- valid target handle

- target has to be in ProgramMode

© halec 2019 58

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

targetHandle

Target handle for the target to be addressed.

memType

Which memory type to read from. This value is specific to the
particular target family and is described in the respective chapters.

startAddr

First target memory address to read from.

length

Number of bytes to read.

Return value:

- char array with data read

Note for verification while reading

To achieve a verification similar to the one used when writing to the target,
you can verify the read file by subsequently calling target_write with
"verify = verifyOnly".

Exceptions:

OutOfMemory Insufficient memory available for creating
roloBasic array.

targetMemoryLayout See chapter „Exceptions of roloFlash“.
targetWrongMode Target is not in"ProgramMode".
targetCommunication Communication with the target does not work.
targetError There is an error on the target‘s side.
apiTypeFault Invalid type for one of the parameters.
invalidHandle Target handle or the appropriate bus has already

been closed.
<various file system
exceptions>

See chapter „Exceptions of the File System“.

© halec 2019 59

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

3.8 Target Atmel AVR (ISP Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader will get used.

Supported memTypes for writing:

• Flash

• EEPROM

Supported memTypes for reading:

• Flash

• EEPROM

3.8.1 target_getDeviceId

s = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the
manufacturer‘s documents, depending on the controller. Independent of
this, roloFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

© halec 2019 60

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Read out device ID or signature. The device ID gets returned in a byte-
array with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for target handle.

3.8.2 target_readBits

values = target_readBits(<targetHandle>, <index>)

Read out specified fuses or lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

Specifies which fuses or lock-bits to read. For this purpose, the
following constants are defined: FUSES_LOW, FUSES_HIGH,
FUSES_EXT and LOCK_BITS.
For controllers without extended fuses, the value returned for
FUSES_EXT undefined (no exception is generated).

Return value:

Read out fuses or lock-bites.

© halec 2019 61

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.8.3 target_writeBits

target_writeBits <targetHandle>, <index>, <values>

Writes to the specified fuses or lock-bits.

Attention!

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute
target_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s
manual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

index

© halec 2019 62

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Specifies which fuses or lock-bits to write to. For this purpose, the
following constants are defined: FUSES_LOW, FUSES_HIGH,
FUSES_EXT and LOCK_BITS.
For controllers without extended fuses, nothing gets written when
specifying FUSES_EXT (no exception is generated).

values

Values to be written.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.8.4 target_setExtendedAddressMode

target_setExtendedAddressMode <targetHandle>, <value>

For controllers with 256 kB or more flash memory, the regular command
set is insufficient for programming over the ISP interface, instead, an
extended address mode is required.

When configuring the flash memory size (via target_setMemoryMap
with memType = flash and memProperty = mm_size), this value gets set
automatically.

Using this function, this value can be overridden.

Prerequisites:

- valid targetHandle

- target has to be in ProgramMode.

Parameters:

targetHandle

© halec 2019 63

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Target handle for the target to be addressed

value

0: Do not use extended address mode
else: Use extended address mode

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.9 Atmel TPI (TPI Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

Supported memTypes for writing:

• Flash

Supported memTypes for reading:

• Flash

3.9.1 target_getDeviceId

s = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the
manufacturer‘s documents, depending on the controller. Independent of
this, roloFlash documentation uses the term "device ID" exclusively.

© halec 2019 64

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-
array with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for target handle.

3.9.2 target_readBits

values = target_readBits(<targetHandle>, <index>)

Read out specified fuses or lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse byte 0 or configuration byte, respectively

© halec 2019 65

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Lock-Bits: for lock-bits

Return value:

Read out fuses or lock-bits.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.9.3 target_writeBits

target_writeBits <targetHandle>, <index>, <values>

Writes the specified fuses or lock-bits.

Attention!

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute
target_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s
manual. For resetting, you can use the procedure target_restart.

© halec 2019 66

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse Byte 0 or configuration byte, respectively
Lock-Bits: for lock-bits

values

Values to be written.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index or value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.10 Target Atmel PDI (PDI Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

Supported memTypes for writing:

• Flash

• EEPROM

Supported memTypes for reading:

• Flash

• EEPROM

© halec 2019 67

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

3.10.1 target_getDeviceId

id = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-
array with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for TargetHandle.

3.10.2 target_readBits

values = target_readBits(<targetHandle>, <index>)

Read out the specified fuses or lock-bits.

Prerequisites:

© halec 2019 68

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse byte 0
1: Fuse byte 1
2: Fuse byte 2
3: <invalid>
4: Fuse byte 4
5: Fuse byte 5
6: <invalid>
7: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

Return value:

Read out fuses or lock-bits.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.10.3 target_writeBits

target_writeBits <targetHandle>, <index>, <values>

Writes to the specified fuses or lock-bits.

Attention!

© halec 2019 69

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute
target_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s
manual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

index

0: Fuse byte 0
1: Fuse byte 1
2: Fuse byte 2
3: <invalid>
4: Fuse byte 4
5: Fuse byte 5
6: <invalid>
7: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

values

Values to be written.

Return value:

- none (procedure)

© halec 2019 70

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index oder value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for einen der Parameter.

3.11 Target Atmel UPDI (UPDI-Interface)

All functions of chapters „Target in General“ to „Erase, Write, Read and
Verify Target“, including all subchapters, are supported.

No loader is used.

Supported memTypes for writing:

• Flash

• EEPROM

• userSignature

Supported memTypes for reading:

• Flash

• EEPROM

• userSignature

3.11.1 target_getDeviceId

id = target_getDeviceId(<targetHandle>)

Reads the target‘s signature / device ID. This can be used to distinguish
between different controllers.

Note:

Use of the terms "device ID" and "signature" varies throughout the
manufacturer‘s documents, depending on the controller. Independent of
this, roloFlash documentation uses the term "device ID" exclusively.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

© halec 2019 71

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

targetHandle

Target handle for the target to be addressed

Return value:

Read out device ID or signature. The device ID gets returned in a byte-
array with 3 bytes. This device ID can be compared with a device ID from
the target database.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for TargetHandle.

3.11.2 target_readBits

values = target_readBits(<targetHandle>, <index>)

Reads out specified fuses or lock-bits.

Prerequisites:

- valid target handle

- target has to be in ProgramMode.

Parameters:

targetHandle

Target handle for the target to be addressed

index (from manufacturer documentation for ATtiny417/817)

0: WDTCFG

© halec 2019 72

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

1: BODCFG
2: OSCCFG
3: <invalid>
4: TCD0CFG
5: SYSCFG0
6: SYSCFG1
7: APPEND
8: BOOTEND
9: <invalid>
10: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

Return value:

Read out fuses or lock-bits.

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index.
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

3.11.3 target_writeBits

target_writeBits <targetHandle>, <index>, <values>

Writes to the specified fuses or lock-bits.

Attention!

– Set the lock bits only after having executed all other accesses to the
chip.

– If you want to work on a chip locked by lock-bits, first execute
target_eraseFlash . This procedure also resets the lock-bits.

Prerequisites:

- valid target handle

© halec 2019 73

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- target has to be in ProgramMode.

Note:

Some changes to fuses take effect or are visible by target_readBits
only after a reset. For more information, consult the respective target‘s
manual. For resetting, you can use the procedure target_restart.

Parameters:

targetHandle

Target handle for the target to be addressed

index (from manufacturer documentation for ATtiny417/817)

0: WDTCFG
1: BODCFG
2: OSCCFG
3: <invalid>
4: TCD0CFG
5: SYSCFG0
6: SYSCFG1
7: APPEND
8: BOOTEND
9: <invalid>
10: Lock-bits
 Note: for lock-bits, the constant LOCK_BITS
 can be used.

values

Values to be written.

Return value:

- none (procedure)

Exceptions:

targetWrongMode Target is not in "ProgramMode".
targetCommunication Communication with the target does not work.
apiValueRange Invalid value for index oder value
invalidHandle Target handle or bus have already been closed.
apiTypeFault Invalid type for one of the parameters.

© halec 2019 74

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

4 Files

File names:

• Filenames must follow the 8.3 rule: „XXXXXXXX.YYY“.

• Only characters „A“ - “Z“, “0“ - “9“, „_“ and „-“ are valid.

• Letters must be capital letters.

Directory names:

• Directory names may contain eight characters at most: „XXXXXXXX“.

• Otherwise, the same conventions as for filenames apply.

Current directory is always the root directory:

• There is no „change directory“. The current path is always the root
directory. Thusly, a filename must always contain the complete path.

• Both „/“ and „\“ are supported separators for separating directories and
file names within a path.

4.1 fs_create

fs_create <filesystem>, <filename>

Creates the specified file. Afterwards, the file is still closed. If the file
already exists, this procedure has no effect.

If you want to create a file and write something to it, you have to
additionally open it:

fs_create 0, "TEST.TXT"

handle = fs_open(0, "TEST.TXT")

Prerequisites:

- none

© halec 2019 75

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

filesystem

This parameter is ignored and should be specified as 0.

filename

The requirements for filenames apply, see chapter „Files“.

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for filename.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.2 fs_remove

fs_remove <filesystem>, <filename>

Remove the specified file or directory, if present.

Prerequisites:

- none

Parameters:

filesystem

This parameter is ignored and should be specified as 0.
filename

The requirements for directory names and filenames apply, see
chapter „Files“.

Return value:

- none (procedure)

© halec 2019 76

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

fileNotFound The specified file does not exist.
apiTypeFault Invalid type for filename.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.3 fs_mkDir

fs_mkDir <filesystem>, <dirname>

Creates the specified directory. If it already exists, this procedure has no
effect.

Prerequisites:

- none

Parameters:

filesystem

This parameter is ignored and should be specified as 0.

dirname

The requirements for directory names apply, see chapter „Files“.

Return value:

- none (procedure)

Exceptions:

apiTypeFault Invalid type for dirname.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.4 fs_fileExists

bool fs_fileExists(<filesystem>, <filename>)

© halec 2019 77

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Checks if the specified file exists.

Prerequisites:

- none

Parameters:

filesystem

This parameter is ignored and should be specified as 0.

filename

The requirements for filenames apply, see chapter „Files“.

Return value:

0 = File does not exist

1 = File exists

Exceptions:

apiTypeFault Invalid type for filename.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.5 fs_filesize

size = fs_filesize(<filesystem>, <filename>)

Determines the size of the specified file.

Prerequisites:

- File exists.

Parameters:

filesystem

© halec 2019 78

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

This parameter is ignored and should be specified as 0.

filename

The requirements for filenames apply, see chapter „Files“.

Return value:

Size of file in bytes.

Exceptions:

apiTypeFault Invalid type for filename.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.6 fs_open

filehandle = fs_open(<filesystem>, <filename>)

Opens the specified file.

Prerequisites:

The file must already exist. If a new file should be opened, fs_create
must be used beforehand.

Parameters:

filesystem

This parameter is ignored and should be specified as 0.
filename

The requirements for filenames apply, see chapter „Files“.

Return value:

File handle for accessing the file (e. g. for fs_read and fs_write).
The file handle is also necessary for closing the file (fs_close).

© halec 2019 79

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

apiTypeFault Invalid type for filename.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.7 fs_read

a = fs_read(<filehandle>, <position>, <count>)

Reads specified number of bytes from given file.

Prerequisites:

- Valid Filehandle (by means of fs_open).

Parameters:

filehandle

The file handle returned by fs_open.

position

Byte position that should be read from.

count

Number of bytes to be read.

Return value:

Array of byte with the data read out. The array has size count. If not
enough data could be read, the array is accordingly smaller. If you try to
read at the or after the end of file, an empty array with size 0 will be
returned.

Exceptions:

apiValueRange Invalid value for filehandle, position or count.
apiTypeFault Invalid type for filehandle, position or count.
<various file system
exceptions>

See chapter „File System Exceptions“.

© halec 2019 80

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

4.8 fs_write

fs_write <filehandle>, <position>, <array>

Writes the specified data into the given file.

Should the position be out of the current file size, the file gets filled with
random data up to that position.

Prerequisites:

- Valid Filehandle (returned by fs_open).

Parameters:

filehandle

The FileHandle returned by fs_open.

position

Byte position that should be written to.

array

Array of byte with the data to be written.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for filehandle, position or count.
apiTypeFault Invalid type for filehandle, position or count.
<various file system
exceptions>

See chapter „File System Exceptions“.

© halec 2019 81

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

4.9 fs_truncate

fs_truncate <filehandle>, <len>

Truncates the file to the specified length. If the file is already smaller, this
procedure has no effect.

Prerequisites:

- Valid Filehandle (returned by fs_open).

Parameters:

filehandle

The file handle returned by fs_open.

len

Length that the file should be truncated to.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for filehandle.
apiTypeFault Invalid type for filehandle or len.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.10 fs_close

fs_close <filehandle>

Closes the file. This invalidates the given Filehandle, which thusly must
not be used anymore.

© halec 2019 82

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- Valid file handle (returned by fs_open).

Parameters:

filehandle

File handle returned by fs_open.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for filehandle.
apiTypeFault Invalid type for filehandle.
<various file system
exceptions>

See chapter „File System Exceptions“.

4.11 fs_sync

fs_sync <filesystem>

Ensures that all data not yet written to the microSD card now does get
written to it. It is recommended to call this procedure, if write accesses to
the card occur.

Prerequisites:

- none

Parameters:

filesystem

This parameter is ignored and should be specified as 0.

Return value:

© halec 2019 83

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- none (procedure)

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

5 LEDs

Always only one LED simultaneously:

• Within roloBasic, only 1 LED can be lit at any one time, in order to
reduce the current load of the target as much as possible.

Numbering and Colors:

• The LED numbering in roloBasic is the same as on the roloFlash case.

• The LEDs can be lit green or red. For this, the constants COLOR_GREEN
and COLOR_RED are available.

Non-blocking:

• All procedures in this chapter are non-blocking. This means, e. g. that a
running light activated by led_runningLight runs in parallel to the
subsequent execution of roloBasic.

5.1 led_on

led_on <index>, <color>

Makes the given LED light up in the specified color.

Prerequisites:

- none

© halec 2019 84

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Parameters:

index

Number of LED

color

COLOR_GREEN or COLOR_RED

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for index or color.
apiTypeFault Invalid type for index or color.

5.2 led_off

led_off

Turns off all LEDs.

Prerequisites:

- none

Parameters:

- none

Return value:

- none (procedure)

Exceptions:

- none

© halec 2019 85

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

5.3 led_blink

led-blink <index>, <color>, <speed>

Makes given LED flash with the given speed.

Prerequisites:

- none

Parameters:

index

Number of LED

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for index, color or speed.
apiTypeFault Invalid type for index, color or speed.

5.4 led_runningLight

led_runningLight <from>, <to>, <color>, <speed>

Starts a running light.

© halec 2019 86

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Prerequisites:

- none

Parameters:

from, to

The running light runs from LED 'from' to LED 'to'.
If 'from' is smaller than 'to', the light runs in the other direction.
If 'from' equals 'to', one LED is lit permanently.

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for from, to, color or speed.
apiTypeFault Invalid type for from, to, color or speed.

5.5 led_runningLightOutstanding

led_runningLightOutstanding <from>, <to>, <color>,
<speed>, <outstandingLedNumber>

Starts a running light with the specified LED having the opposite color.

Prerequisites:

- none

Parameters:

© halec 2019 87

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

from, to

The running light runs from LED 'from' to LED 'to'.
If 'from' is smaller than 'to', the light runs in the other direction.
If 'from' equals 'to', one LED is lit permanently.

color

COLOR_GREEN or COLOR_RED

speed

Speed of flashing in ms

outstandingLedNumber

Number of LED that lights up in opposite color.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for from, to, color, speed or
outstandingLedNumber.

apiTypeFault Invalid type for from, to, color, speed or
outstandingLedNumber.

6 Querying roloFlash Properties

Using the following system functions and system constants, you can
determine various pieces of information about your roloFlash.

6.1 Version Numbers etc.

© halec 2019 88

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Name Value / Meaning
sys_companyName „halec <https://halec.de>“
sys_deviceName „roloFlash 2“ or „roloFlash 2 AVR“
sys_softwareVersion Version number of firmware
sys_hardwareVersion Version number of hardware
sys_bootloaderVersion Version number of the bootloader
sys_imageVersion roloFlash expects the image generated by the

compiler in this version. Therefore, please use
the compiler matching the roloFlash firmware.

6.2 sys_serialNumber

Name Value / Meaning
sys_serialNumber A string comprising 24 characters, each

character being in the range '0' -'9' or 'A' - 'F'.

The serial number is unambiguous for each roloFlash. Thusly, you can
create roloBasic scripts that run only on certain roloFlashs.

Example:

1. Determine serial number once:

print "serialNumber: ", sys_serialNumber, "\r\n"

Extract from log file:

serialNumber: 1B9FE86E90B7660F08E387B

2. Your script is to run only on this very roloFlash, otherwise it should abort
with an exception:

if sys_serialNumber <> "1B9FE86E90B7660F08E387B"
 print "Wrong roloFlash, abort\r\n"
 throw userException
endif

Note:

© halec 2019 89

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

For the serial number, a unique device ID predefined by the chip
manufacturer is used internally.

7 Miscellaneous

7.1 sys_setLogMode

sys_setLogMode <logMode>

Set logging mode (see following chapter, „print“).

Printing will append to the file „LOG.TXT“. If this file does not exist, it will
be created.

Prerequisites:

- none

Parameters:

logMode:

LOGMODE_OFF: print output is suppressed.
LOGMODE_NORMAL: The file is opened and stays opened. Print
output gets buffered and occasionally written to the file. At the end of
the script, the remaining buffered data gets written to the file, and the
file gets closed.
LOGMODE_IMMEDIATE: For each print output, the log file gets
opened, the output gets written to the file, and the file gets closed
again. This ensures that at the time of execution of the next script
line, the previous print output has been stored onto the microSD
card.

Return value:

- none (procedure)

Note: The default value for logMode is LOGMODE_NORMAL.

© halec 2019 90

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Recommendations:

Use LOGMODE_IMMEDIATE only for troubleshooting. As each print
output opens the file anew, writes to it and closes it again, the FAT (file
allocation table) on the microSD card gets written to each time. This can
lead to higher wear and tear of the microSD card and ultimately make it
fail.

If you do not require log output at all, you can change to LOGMODE_OFF
at the beginning of the script. You can also change the logMode at any
point in the script.

If you work with LOGMODE_NORMAL, the log output might be written to
the microSD card only after processing the script has finished. If you light
up the last LED in green in your scripts, preferably do it at the end of the
script, so that the subsequent writing of buffered data to the microSD card
can be concluded within the user‘s reaction time. Probably they will
remove roloFlash afterwards.

Exceptions:

apiValueRange Invalid value for logMode.
apiTypeFault Invalid type for logMode.

7.2 print

print <a>, , ...

The parameters a, b etc. get printed. This procedure takes any number
of parameters.

Printing writes to the end of the file „LOG.TXT“. If the file does not exist, it
will be created.

Prerequisites:

- none

Parameters:

a, b, ...

© halec 2019 91

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Here you can output numbers and arrays. Example:
value = 42
print "The value is: ", value
If a given parameter is neither a number nor a char-array, nothing is
output.

Return value:

- none (procedure)

Note: The output depends on the chosen log mode (see previous chapter,
„Miscellaneous“).

Exceptions:

<various file system
exceptions>

See chapter „File System Exceptions“.

7.3 delay

delay <duration>

Waits for the specified time in ms. Only afterwards will this procedure
return.

Prerequisites:

- none

Parameters:

duration

Time to wait in ms.

Return value:

- none (procedure)

© halec 2019 92

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

Exceptions:

apiValueRange Invalid value for duration.
apiTypeFault Invalid type for duration.

7.4 sys_getSystemTime

t = sys_getSystemTime

Determines the time lapsed since system start in ms.

Prerequisites:

- none

Parameters:

- none

Return value:

System time in ms.

Exceptions:

- none

7.5 getTargetBoardVoltage

u = getTargetBoardVoltage

Determines voltage provided by target board (in mV).

Prerequisites:

© halec 2019 93

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- none

Parameters:

- none

Return value:

Determined voltage in mV.

Exceptions:

- none

7.6 sys_setCpuClock

sys_setCpuClock <frequency>

Changes the internal CPU clock of roloFlash.

• a higher clock needs more energy from the target board

• a lower clock might need longer to process a roloBasic script incl.
flashing.

At start, roloFlash‘s clock is set to 24 MHz, for lower energy consumption.

Attention!

Busses already opened might change their own clock speed in the
process. You can query the current clock speed.

Recommendation:

If required, change the clock speed at the beginning of your script.

Prerequisites:

- none

Parameters:

© halec 2019 94

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

frequency

Clock frequency in Hz.
Supported values:

• CPU_CLOCKMAX: 120000000 (120 MHz)

• CPU_CLOCKMIN: 24000000 (24 MHz)

The clock frequency always gets adjusted to the next smaller clock
speed, but always to at least 24 Mhz.

Return value:

- none (procedure)

Exceptions:

apiValueRange Invalid value for frequency.
apiTypeFault Invalid type for frequency.

7.7 sys_getCpuClock

u = sys_getCpuClock

Determine the current clock speed of roloFlash in Hz.

Prerequisites:

- none

Parameters:

- none

Return value:

Read out clock speed in Hz.

Exceptions:

© halec 2019 95

roloFlash 2 AVR VI roloFlash API (List of Procedures and
Functions)

- none

© halec 2019 96

roloFlash 2 AVR VII Exceptions

VII Exceptions
The roloBasic manual has a detailed description of how exceptions can be
thrown and caught again. If an exception is not caught, it gets displayed
using the LEDs.

If the exception to be displayed is not a number, an exception
"exceptionNotANumber" gets shown. Further details can be found in
chapter „Exception has Occurred“. Only exceptions thrown by the user
(instead of the system) can be non-numeric.

There are different kinds of exceptions that all get treated equally:

• roloBasic exceptions

• File system exceptions

• roloFlash exceptions

• Exceptions thrown by the user

1 roloBasic Exceptions

These exceptions occur for errors that are not particularly related to
roloFlash, but to the processing of roloBasic. A typical example would be a
valueRange exception.

These exceptions are also listed in the roloBasic manual.

If errors as described for exceptions valueRange, argumentFault and
typeFault occur while calling an API function or procedure, the exceptions
apiValueRange, apiArgumentFault or apiType Fault are created instead.
The respective number of these exceptions is exactly 200 higher than the
appropriate roloBasic exceptions.

© halec 2019 97

roloFlash 2 AVR VII Exceptions

Name Number Description

outOfMemory 1 Too little free memory present

rootstackOverflow 2 Internal system error

nullpointerAccess 3 Interner system error

valueRange 4 Value range overrun, e g. while assigning values to
arrays.

divisionByZero 5 Division by 0. Can occur with div or mod

argumentFault 6 Invalid number of arguments while calling a
roloBasic function or procedure.

illegalFunction 7 A variable was called like a function or procedure,
but does not contain a valid function or procedure.

indexRange 8 Index range overrun while accessing array.

typeFault 9 A parameter passed has the wrong type.

2 File System Exceptions

These exceptions occur in relation to the file system or the microSD card.

Name Number Description

deviceError 101 Reading from or writing to the microSD card failed.

badCluster 102 Problems within the file system. The file system
should be checked on a PC for consistency.

notMounted 103 Access to the microSD card, although it was not
mounted. This indicates a problem with the
microSD card.

removeError 104 The microSD card has been removed.

createError 105 Creation of file or directory failed.

fileNotOpen 106 The file is not open.

fileNotFound 107 The specified file or directory could not be found.

diskFull 108 The microSD card is full.

truncateError 109 Truncating of a file using fs_truncate failed.

illegalCluster 110 Problems within file system. The file system should
be checked on a PC for consistency.

fileLocked 111 Trying to open an already open file a second time.
Maybe a call to fs_close has been forgotten.

outOfFileHandles 112 The number of simultaneously open files is limited
to 3. Tried to open another file.

loaderNotFound 113 The required loader was not found on the microSD

© halec 2019 98

roloFlash 2 AVR VII Exceptions

card.

3 User Exceptions

• The user can throw exceptions using throw. These can be numeric
and use also use predefined values, e. g.:
throw rangeError

• To better differentiate between user-created exceptions and other
exceptions, different exception numbers can be used. For this purpose,
the constant userException with a value of 1000 is availble. The
advantage of this value is that is particularly visible in the blink code, if
the exception is not caught. This constant can be used as offset for own
exceptions, e. g:
throw userException + 1

• You can also throw non-numeric exceptions. If such an exception does
not get caught, it gets converted to the exception
exceptionIsNotANumber at the end of the script and visualized by a
blink code: e. g.:
throw "error"

4 roloFlash Exceptions

Name Number Description

exceptionIsNotANumber 200 An exception that is not a number has been thrown
and not caught within roloBasic. In this case the
original exception gets discarded and replaced by
this exception.

This can happen only for exceptions thrown by the
user, since all other functions use the numerical
exceptions described here exclusively.
Beispiel: throw "Error"

imageTooLarge 201 The roloBasic script is too big. About 65,000 bytes
can be loaded at most. Please check the size of the
file generated by the roloBasic compiler.

© halec 2019 99

roloFlash 2 AVR VII Exceptions

imageWrongVersion 202 The roloBasic compiler utilized does not match the
roloFlash firmware. It is recommended to always
use the latest compiler and the latest firmware.for
roloFlash.

productWrongVersion 203 It has been tried to load an image of a different
product onto roloFlash, e. g. to load an image for
roloFlash 1 onto roloFlash 2.

apiValueRange 204 Value range overrun of a parameter while calling an
API function or proceudre.
Example: ledOn 6, COLOR_GREEN ! There
are only 5 LEDs (Note: the error number is
exactly 200 higher than the appropriate roloBasic
exception "valueRange")

imageNotFound 205 Although the microSD card could be mounted, the
file RUN_V05.BIN could not be found.

apiBadArgumentCount 206 Invalid number of arguments while calling an API
function or procedure.
(Note: the error number is exactly 200 higher than
the appropriate roloBasic exception
"badArgumentCount")

apiTypeFault 209 A parameter passed to an API function or procedure
has the wrong type. (Note: the error number is
exactly 200 higher than the appropriate roloBasic
exception "typeFault")

targetWrongMode 210 The procedure or function called requires a
particular mode of the target. For instance, the
procedure setProgrammingSpeed requires the
target to be in ProgramMode.

targetCommunication 211 An error during communication with the target.

targetMemoryLayout 212 The memory layout of the target controller has not
been specified (target_setMemoryMap).

eraseError 213 Erasing of target failed.

targetVerify 214 Data read back differs from comparison data.

targetAlignment 215 Memory alignment of target was not abided to. For
instance, on an STM32H7, data blocks to be written
to flash memory must begin at a 32 byte border in
flash memory.

hexFileSize 230 Implausible size of specified hex file. Maybe the hex
file is defective or empty.

hexFileCRC 231 Checksum error while parsing the hex file. Maybe
the hex file is defective.

hexFileSyntax 232 Syntax error while parsing the hex file. Maybe the
hex file is defective.

© halec 2019 100

roloFlash 2 AVR VII Exceptions

invalidHandle 250 The handle used is invalid. The handle has been
closed already, or a wrong parameter has been
used instead of a handle.

resourceUnavailable 251 The requested resource is unavailable. This can
happen while opening a bus and another bus that
shares some resources is already open. Most
notably, this exception occurs if the same bus gets
opened twice.

unknownTarget 252 The requested controller cannot be found in the
database (se DB_getHandle).

propertyNotFound 253 The required property is not available for the
specified controller (see DB_get).

familyNotSupported 254 The specified controller family is not supported (see
getTargetHandle).

functionNotSupported 255 A function or procedure has been called that is not
supported for the current target. E. g. the procedure
target_writeBits is only supported for Atmel
controllers.

valueUnknown 256 Failed trying to read a value that cannot be
determined (see target_getMemoryMap).

valueNotAllowed 257 Failed using an invalid value (see
target_setMemoryMap).

timeoutError 258 The called function or procedure takes too much
time. There may be a problem with the target. If
after such an error work with the current target is to
be continued, it might be necessary to first close the
target handle and re-request another one.

targetError 260 The target reported an error not specified in detail.
For ARM targets, this could be a set sticky bit.

writeProtectError 261 The addressed memory area of the target is write
protected.

readProtectError 262 The addressed memory area of the target is read
protected.

writeError 263 There was an error while writing to the addressed
memory area.

readError 264 There was an error while reading from the
addressed memory area.

targetMissingProperty 265 A value required was not set.

© halec 2019 101

roloFlash 2 AVR VIII Description of LED Codes

VIII Description of LED Codes

1 Normal Operation

1.1 No microSD card found

LEDs:

1: red
2:
3:
4:
5:

Description:

No microSD card found, or the card is not formatted as FAT32.

Note:

For normal operation, it is required that the microSD card has already
been inserted before plugging roloFlash onto a target board.
Inserting the microSD card after plugging on roloFlash is a case
reserved for updating roloFlash‘s firmware.
If you want to use roloFlash normally, and just forgot to insert the
microSD card beforehand, just remove roloFlash from the target
board, insert the microSD card, and plug on roloFlash again.

1.2 Exception has Occurred

If an exception occurred and it was not caught in the roloBasic script, the
number of the exception gets visualized by an LED blink code.

LEDs:

1: red: comes on and off shortly at beginning of the blink code
2: red: flashing, number corresponds to 1000s of exception
3: red: flashing, number corresponds to 100s of exception

© halec 2019 102

roloFlash 2 AVR VIII Description of LED Codes

4: red: flashing, number corresponds to 10s of exception
5: red: flashing, number corresponds to 1s of exception

Description:

This code came about by two possible events:
• An appropriate „throw“ command has been executed in the script.

Example:
if getVoltage() > 4000
 throw 1234 !Create exception 1234
endif

• A function or procedure could not fullfil its task and created an
exception.

2 roloFlash Update

Updating the roloFlash firmware is detailed in chapter „Updating
roloFlash“.

2.1 Waiting for microSD Card for Udpate

LEDs:

1: red
2:
3:
4:
5:

Description:

If while starting roloFlash no microSD card is inserted, roloFlash
waits for the insertion of a microSD card to start the roloFlash
firmware update process afterwards.
If you do not want to update the roloFlash firmware, start roloFlash
with a microSD card inserted.

2.2 Update is Running

LEDs:

© halec 2019 103

roloFlash 2 AVR VIII Description of LED Codes

1: red
2: green \ flashing alternately
3: green /
4:
5:

Description:

The update process is running. It takes about 10-15 seconds. Please
do not abort this process.

2.3 Update Finished Successfully

LEDs:

1: green
2: green
3:
4:
5:

Description:

The update has been finished successfully. After removing roloFlash,
the new firmware will be used for all future operations.

2.4 Update Failed: File Error

LEDs:

1: red
2: red
3:
4:
5:

Description:

The update failed with a file error. The old firmware might still be
available.

Possible remedy:

• Retry update..

• Update using a different firmware.

© halec 2019 104

roloFlash 2 AVR VIII Description of LED Codes

2.5 Update Failed: File Not Found

LEDs:

1: red
2:
3: red
4:
5:

Description:

The update could not be started, as no file for the update could be
found. The old firmware is still available.

Possible remedy:

Copy the file for the firmware update to the microSD card, then try
again to update.

2.6 Update Failed: Multiple Files Found

LEDs:

1: red
2:
3:
4: red
5:

Description:

The update could not be started, as multiple files eligible for an
update were found and thusly, it is unclear which file to use. The old
firmware is still availble.

Possible remedy:

Only one update file may be present for an update. Please remove
superfluous files and re-try the update.

2.7 Update Failed: Other Reasons

LEDs:

1: red
2:
3:

© halec 2019 105

roloFlash 2 AVR VIII Description of LED Codes

4:
5: red

Description:

The update failed. The old firmware might be still available.

Possible remedy:

• Retry update.

• Try update with a different firmware file.

© halec 2019 106

roloFlash 2 AVR IX Specifications

IX Specifications

1 Supported Controllers from Atmel

The following controllers are known to the database. The names listed
here can be used with DB_getHandle.

1.1 AVR (ISP Interface)

Connection via ISP interface.

Supported Controllers:

AT90CAN128, AT90CAN32, AT90CAN64,

AT90PWM1, AT90PWM2, AT90PWM216,

AT90PWM2B, AT90PWM3, AT90PWM316,

AT90PWM3B, AT90PWM81, AT90S1200,

AT90S2313, AT90S2323, AT90S2343,

AT90S4414, AT90S4433, AT90S4434,

AT90S8515, AT90S8535, AT90SCR100H,

AT90USB1286, AT90USB1287, AT90USB162,

AT90USB646, AT90USB647, AT90USB82,

ATmega103, ATmega128, ATmega1280,

ATmega1281, ATmega1284, ATmega1284P,

ATmega1284RFR2, ATmega128A, ATmega128RFA1,

ATmega128RFR2, ATmega16, ATmega161,

ATmega162, ATmega163, ATmega164A,

ATmega164P, ATmega164PA, ATmega165,

ATmega165A, ATmega165P, ATmega165PA,

ATmega168, ATmega168A, ATmega168P,

ATmega168PA, ATmega168PB, ATmega169,

© halec 2019 107

roloFlash 2 AVR IX Specifications

ATmega169A, ATmega169P, ATmega169PA,

ATmega16A, ATmega16HVA, ATmega16HVA2,

ATmega16HVB, ATmega16HVBrevB, ATmega16M1,

ATmega16U2, ATmega16U4, ATmega2560,

ATmega2561, ATmega2564RFR2, ATmega256RFR2,

ATmega32, ATmega323, ATmega324A,

ATmega324P, ATmega324PA, ATmega324PB,

ATmega325, ATmega3250, ATmega3250A,

ATmega3250P, ATmega3250PA, ATmega325A,

ATmega325P, ATmega325PA, ATmega328,

ATmega328P, ATmega328PB, ATmega329,

ATmega3290, ATmega3290A, ATmega3290P,

ATmega3290PA, ATmega329A, ATmega329P,

ATmega329PA, ATmega32A, ATmega32C1,

ATmega32HVB, ATmega32HVBrevB, ATmega32M1,

ATmega32U2, ATmega32U4, ATmega32U6,

ATmega48, ATmega48A, ATmega48P,

ATmega48PA, ATmega48PB, ATmega64,

ATmega640, ATmega644, ATmega644A,

ATmega644P, ATmega644PA, ATmega644RFR2,

ATmega645, ATmega6450, ATmega6450A,

ATmega6450P, ATmega645A, ATmega645P,

ATmega649, ATmega6490, ATmega6490A,

ATmega6490P, ATmega649A, ATmega649P,

ATmega64A, ATmega64C1, ATmega64HVE,

ATmega64HVE2, ATmega64M1, ATmega64RFR2,

ATmega8, ATmega8515, ATmega8535,

ATmega88, ATmega88A, ATmega88P,

ATmega88PA, ATmega88PB, ATmega8A,

ATmega8HVA, ATmega8U2, ATtiny12,

ATtiny13, ATtiny13A, ATtiny15,

© halec 2019 108

roloFlash 2 AVR IX Specifications

ATtiny1634, ATtiny167, ATtiny22,

ATtiny2313, ATtiny2313A, ATtiny24,

ATtiny24A, ATtiny25, ATtiny26,

ATtiny261, ATtiny261A, ATtiny4313,

ATtiny43U, ATtiny44, ATtiny441,

ATtiny44A, ATtiny45, ATtiny461,

ATtiny461A, ATtiny48, ATtiny80,

ATtiny828, ATtiny84, ATtiny840,

ATtiny841, ATtiny84A, ATtiny85,

ATtiny861, ATtiny861A, ATtiny87,

ATtiny88

1.2 AVR (TPI Interface)

Connection via TPI interface.

Supported Controllers:

ATtiny10, ATtiny102, ATtiny104,

ATtiny20, ATtiny4, ATtiny40,

ATtiny5, ATtiny9

1.3 AVR (PDI Interface)

Connection via PDI interface.

Supported Controllers:

ATxmega128A1, ATxmega128A1U, ATxmega128A3,

ATxmega128A3U, ATxmega128A4U, ATxmega128B1,

ATxmega128B3, ATxmega128C3, ATxmega128D3,

ATxmega128D4, ATxmega16A4, ATxmega16A4U,

ATxmega16C4, ATxmega16D4, ATxmega16E5,

ATxmega192A3, ATxmega192A3U, ATxmega192C3,

ATxmega192D3, ATxmega256A3, ATxmega256A3B,

ATxmega256A3BU, ATxmega256A3U, ATxmega256C3,

ATxmega256D3, ATxmega32A4, ATxmega32A4U,

© halec 2019 109

roloFlash 2 AVR IX Specifications

ATxmega32C3, ATxmega32C4, ATxmega32D3,

ATxmega32D4, ATxmega32E5, ATxmega384C3,

ATxmega384D3, ATxmega64A1, ATxmega64A1U,

ATxmega64A3, ATxmega64A3U, ATxmega64A4U,

ATxmega64B1, ATxmega64B3, ATxmega64C3,

ATxmega64D3, ATxmega64D4, ATxmega8E5

1.4 AVR (UPDI Interface)

Connection via UPDI interface.

Supported Controllers:

ATmega3208, ATmega3209, ATmega4808,

ATmega4809, ATtiny1614, ATtiny1616,

ATtiny1617, ATtiny212, ATtiny214,

ATtiny3214, ATtiny3216, ATtiny3217,

ATtiny412, ATtiny414, ATtiny416,

ATtiny417, ATtiny814, ATtiny816,

ATtiny817

2 Technical Data

• Supported controllers of the Atmel AVR series with ISP interface:
• AT90
• ATtiny
• ATmega

• Supported controllers of the Atmel AVR series with TPI interface:
• all derivatives

• Supported controllers of the Atmel AVR XMega series with PDI
interface:

• all derivatives
• Supported controllers of the Atmel AVR series with UPDI interface:

• all derivatives

© halec 2019 110

roloFlash 2 AVR IX Specifications

• Flash programming of the target microcontroller via 6-pin ISP / TPI /
PDI / UPDI connector. This connector can be directly plugged into
the 6-pin ISP, TPI, PDI or UPDI header of the target board.
Alternatively, an adapter for the 10-pin variant of the ISP header, as
well as a 1:1 adapter for using ribbon cables are available.

• Power supply via the microcontroller to be programmed (2.0 -
5.5 volts).

• Writing of and reading from:
• Flash
• EEPROM
• Fuse-bits
• Lock-bits

• Supported file system: FAT32
• Supported file formats:

• Intel HEX („.HEX“) (I8HEX, I16HEX, I32HEX) (ASCII file)
• RAW (binary file with raw data and no explicit address)

• Supported memory card formats: microSD, microSDHC

© halec 2019 111

	I Preface
	II Scope of Delivery
	III Description
	1 Programming Connector
	1.1 Pin Assignments (Overview)
	1.2 Pinout Atmel ISP Interface
	1.3 Pinout Atmel TPI Interface
	1.4 Pinout Atmel PDI Interface
	1.5 Pinout Atmel UPDI Interface

	2 Pull-Up- / Pull-Down Resistors
	3 Voltage Range
	4 Electrical Protection Measures
	5 LEDs
	6 microSD Card Slot
	7 Typical Usage
	7.1 Preparation of the microSD card on a PC
	7.2 Flashing of the Target Boards

	IV Updating roloFlash
	V List of Supplied roloBasic Scripts
	1 Hello world
	2 Versions
	3 Erase-and-Flash
	4 Read

	VI roloFlash API (List of Procedures and Functions)
	1 Internal Database
	1.1 DB_getHandle
	1.2 DB_get

	2 Busses
	2.1 bus_open
	2.2 bus_close
	2.3 bus_setSpeed
	2.4 bus_getSpeed
	2.5 Atmel ISP Bus
	2.5.1 bus_open(ISP, …) and Available Speeds
	2.5.2 Configure Reset Mode

	2.6 Atmel TPI Bus
	2.6.1 bus_open(TPI, …) and Available Speeds
	2.6.2 Configure Reset Mode

	2.7 Atmel PDI-Bus
	2.7.1 bus_open(PDI, …) and Available Speeds

	2.8 Atmel UPDI Bus
	2.8.1 bus_open(UPDI, …) and Available Speeds

	3 Target in General
	3.1 target_open
	3.2 target_close
	3.3 target_getPresent
	3.4 target_setMode
	3.5 target_restart
	3.6 Read/Write Target Memory Map
	3.6.1 target_setMemoryMap
	3.6.2 target_getMemoryMap
	3.6.3 target_clearMemoryLayout

	3.7 Erase, Write, Read and Verify Target
	3.7.1 target_eraseFlash
	3.7.2 target_writeFromFile
	3.7.3 target_readToFile
	3.7.4 target_write
	3.7.5 target_read

	3.8 Target Atmel AVR (ISP Interface)
	3.8.1 target_getDeviceId
	3.8.2 target_readBits
	3.8.3 target_writeBits
	3.8.4 target_setExtendedAddressMode

	3.9 Atmel TPI (TPI Interface)
	3.9.1 target_getDeviceId
	3.9.2 target_readBits
	3.9.3 target_writeBits

	3.10 Target Atmel PDI (PDI Interface)
	3.10.1 target_getDeviceId
	3.10.2 target_readBits
	3.10.3 target_writeBits

	3.11 Target Atmel UPDI (UPDI-Interface)
	3.11.1 target_getDeviceId
	3.11.2 target_readBits
	3.11.3 target_writeBits

	4 Files
	4.1 fs_create
	4.2 fs_remove
	4.3 fs_mkDir
	4.4 fs_fileExists
	4.5 fs_filesize
	4.6 fs_open
	4.7 fs_read
	4.8 fs_write
	4.9 fs_truncate
	4.10 fs_close
	4.11 fs_sync

	5 LEDs
	5.1 led_on
	5.2 led_off
	5.3 led_blink
	5.4 led_runningLight
	5.5 led_runningLightOutstanding

	6 Querying roloFlash Properties
	6.1 Version Numbers etc.
	6.2 sys_serialNumber

	7 Miscellaneous
	7.1 sys_setLogMode
	7.2 print
	7.3 delay
	7.4 sys_getSystemTime
	7.5 getTargetBoardVoltage
	7.6 sys_setCpuClock
	7.7 sys_getCpuClock

	VII Exceptions
	1 roloBasic Exceptions
	2 File System Exceptions
	3 User Exceptions
	4 roloFlash Exceptions

	VIII Description of LED Codes
	1 Normal Operation
	1.1 No microSD card found
	1.2 Exception has Occurred

	2 roloFlash Update
	2.1 Waiting for microSD Card for Udpate
	2.2 Update is Running
	2.3 Update Finished Successfully
	2.4 Update Failed: File Error
	2.5 Update Failed: File Not Found
	2.6 Update Failed: Multiple Files Found
	2.7 Update Failed: Other Reasons

	IX Specifications
	1 Supported Controllers from Atmel
	1.1 AVR (ISP Interface)
	1.2 AVR (TPI Interface)
	1.3 AVR (PDI Interface)
	1.4 AVR (UPDI Interface)

	2 Technical Data

